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A is a forward model term (L is the model), B stems from an observation
operator H. D and R are (ill-conditioned) covariance matrices.

Question: what is the best preconditioner for (1) of the form

P=A+X, rank(X)<r<n 7
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e Solutions to Sx = b are sought via iterative methods e.g. the
preconditioned conjugate gradient (PCG) method.

Preconditioned iterative methods
e Transform Sx = b into:
P~ 'Sx = P 'b.
e Construction and application of P~! must be cheap.

o Works well if P ~ S, generally we seek x(P~'S) < x(S).

...but what does "~" mean?

Obvious discrepancy measures include ||P — S| Fy oo

P

2, |
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Bregman log determinant matrix divergence

A proper and strictly convex function ¢ € C' defines a Bregman matrix
divergence D, : dom ¢ X ridom ¢ — [0, 00):

Dys(X,Y) = ¢(X) = ¢(Y) = (Ve(Y), (X = Y)).

¢(X) = 31IXIIF = Dr(X,Y)=3lIX - Y|
#(X) = —logdet(X) — Dg(X,Y)=trace(XY™?) — logdet(XY 1) —n

Properties
e Dy(X,Y)=0& X=Y,
e Nonnegativity: Dy(X,Y) >0,
e Convexity: X — Dy(X,Y) is convex.

e In addition, Dg is invariant under congruence transformations:

For invertible M we have Dg(X, Y) = Dg(M* XM, M"Y M).
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Preconditioners as Bregman projections

Recall S = A+ B, A= QQ"
Candidates: P = A+ X = Q(/ + Q7' XQ~*)Q", where rank(X) < r < n

We solve:

minimise  Dg(P, S)
WeH?

st. P=Q(+W)Q"
rank(W) <'r

Invariance to the rescue:
Dg(P,S) = De(Q(/ + W)Q", Q( )Q)
= Dg(l + W, )

Reduced problem:
minimise Dg(/ + W, I+ Q 'BQ ™)
WG]Hﬂr

s.t.  rank(W) <r.
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Summary of theoretical results

Theorem
Let G, be a rank r truncated SVD of G = Q 'BQ*.

is a minimiser of Dg(P, S) over the set of preconditioners of the form
P=A+X, rank(X) <.

Note, in general, P* # A+ B, ("=" holds when, e.g., A= 021)

Theorem
When rank(B) < n, G, is a minimiser of the problem
minimise mz(P_%SP_%)
Xen"
st. P=Q(/+X)Q"
rank(X) < r.
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Digression: which parts of G = Q" !BQ~* do we amputate?

Hermitian rank r approximations W such that |G — W] < ¢
e Truncated SVD: G = Ux, U

e Randomised SVD:
Grsvpo = ©0 ' GOO "

where ©R = Q € R"*" (columns of Q are Gaussian)

o Nystrom: Gy = GQ(Q*GQ)T(GQ)*

Folklore: G, is "better” than Gnys, which is "better” than Grsvp...

Theorem
Gnys is @ minimiser of a range-restricted Bregman divergence:

min  D(Q"WQ,Q"GQ)

WeH"

s.t. range W C range GX2.
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Geometric insights

Why does the Bregman divergence appear so useful?
By a Taylor expansion we have

D(X, X + 6X) ~ %trace(cSX XX XY = %gx(6X, 5X),
and M = (H',, g) is a Riemannian manifold.

Theorem
P* = Q(I + G;)@Q" minimises the Riemannian distance to S given by

1.1
dpm(P,S) = || Log (P25P2)3
among matrices of the form Q(/ + X)Q™ for some X € H'| with rank(X) < r.

Many things to explore

Low-rank geodesic shooting algorithms, alternating projection algorithms, dually flat

Riemannian structure, Stiefel manifold optimisation...
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N
J(x0) = %(Xo =) B0 =)+ % D06 = Mi(xi-1)) Q7 6 = Milxi-1))

initial cond.
forward model

+ 5 D200 = Hiba) TR = Hilx)
i=0

match observations


www.ecmwf.int

Application to variational data assimilation

Gauss-Newton for weak constraint 4D VAR
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Application to variational data assimilation

Gauss-Newton for weak constraint 4D VAR

At each GN step, we solve for the increment dx by inverting the Hessian of Jgn:

S=L"D'L+H'R!H

)
L ] 1. ]

A B

Ql —M1 !

= blkdi R
D_ . L= _ . R=blkdiag (Ry, ..., Rn),

_ H = blkdiag (Ho, . . . , Hy).
QN 7Mn i
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Application to variational data assimilation

Gauss-Newton for weak constraint 4D VAR

At each GN step, we solve for the increment dx by inverting the Hessian of Jgn:

S=L"D'L+H'R!H

)
L ] 1. ]

A B

B i

R = blkdiag (Ro, - . . , Ry),

D= 3 » L= " H = blkdiag (Ho, . . . , Hy)-
QN 7Mn I

Example: assimilating the heat equation 0:u = Au

n=10°

rank(B) = n/2 (we only observe half of the state at each time step)
r € {500,2000,4000} (about 0.05%, 2% and 4% of n, respectively)
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Application to variational data assimilation

Gauss-Newton for weak constraint 4D VAR

At each GN step, we solve for the increment dx by inverting the Hessian of Jgn:

S=L"D'L+H'R!H

)
L ] 1. ]

A B

B I
. (o) - M R = blkdiag (Ro, - . . , Rn),
— . = ’ H = blkdiag (Ho, - - - , Hy)-

Qn =M,
Example: assimilating the heat equation 0:u = Au
n=10°
rank(B) = n/2 (we only observe half of the state at each time step)
r € {500,2000,4000} (about 0.05%, 2% and 4% of n, respectively)

We compare the following preconditioners

P=A P=A+B, and P=Q(/I+G)Q".
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Application to variational data assimilation

‘_1 rmns A — SN () e A A, ichol

Relative residual

0 50 100 150
Iteration number

r € {500,2000, 4000} .
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Insights
e The Bregman divergence appears useful for studying preconditioners.
e |Importance of invariance cannot be understated.
e Nystrém can be derived using the Bregman divergence, where to next?

e Try it: pip install scaled-preconditioners

Generalisations and future work
e What if you don't know the A + B structure?
e Allowing indefiniteness of B: coming soon to an arXiv near you!

e Bounded (or other) divergences (numerical stability, more geometric
insights)...

e Big picture: studying the geometry of preconditioners.
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