
Differentiable programming accross the PDE/ML divide

David A. Ham1, Nacime Bouziani1, India Marsden2, and Reuben Nixon-Hill1

November 2023
1Department of Mathematics, Imperial College London 2Mathematical Institute, University of Oxford

1

In scientific computing, gradients are everywhere

• solving nonlinear PDEs
• computing sensitivities
• data assimilation
• design optimisation
• training neural nets
• …

2

Differentiating computer programs

Not a new idea …

LM Beda, LN Korolev, NV Sukkikh, and TS Frolova. Programs for automatic
differentiation for the machine besm.(in russian) technical report, institute for precise me-
chanics and computation techniques, 1959

by 1981 there are textbooks:
Louis B Rall. Automatic differentiation: Techniques and applications.
Springer, 1981

So automatic/algorithmic differentiation is nearly as old as computing.

3

2010s: ML community and ”differentiable programming”.

”Constructing neural networks using pure and higher-order differentiable
functions and training them using reverse-mode automatic differentiation is
unsurprisingly called Differentiable Programming.”

Erik Meijer. Behind every great deep learning framework is an even greater programming languages
concept (keynote).

In Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, ESEC/FSE 2018,
page 1, New York, NY, USA, 2018. Association for Computing Machinery

4

It’s all about the composable abstractions

Abstract Define symbolic representations for numerical objects and algorithms.
Compose Form larger algorithms by plugging together smaller ones.

5

Differentiable programming and simulation

Claims:

1. There is a useful extension of this concept of differentiable programming to
encompass simulation.

2. FEniCS and Firedrake + pyadjoint are examples1.
3. Using this insight, we can naturally extend packages such as this to interact

better with external (non-PDE) processes and data.

1Wilkinson Prize 2015. 2011 prize was to Waechter and Laird for IPopt.
6

So you want to solve a PDE using finite elements

1. Write down a residual, boundary/initial conditions, forcings, parametrisations.
2. Choose suitable finite element paces and quadrature rules.
3. Choose a suitable (non)-linear solver and preconditioning strategy.
4. Derive and implement the loops over elements, facets, basis functions, and

quadrature points.
5. Implement parallel communication.
6. Implement and compose solvers and preconditioners.
7. Now do it all again for the adjoint.
8. …

7

So you want to solve a PDE using finite elements

1. Write down a residual, boundary/initial conditions, forcings, parametrisations.
2. Choose suitable finite element paces and quadrature rules.
3. Choose a suitable (non)-linear solver and preconditioning strategy.
4. Derive and implement the loops over elements, facets, basis functions, and

quadrature points.
5. Implement parallel communication.
6. Implement and compose solvers and preconditioners.
7. Now do it all again for the adjoint.
8. …

About 20 years ago FEniCS worked out how to do this (Kirby & Logg 2006).

10 years later Firedrake joined the party (Rathgeber et al. 2016).
8

We’ll need a PDE then

Burgers Equation:

∂u
∂t + (u · ∇)u − ν∇2u = 0 (1)

(n · ∇)u = 0 on Γ (2)

in weak form: find u ∈ V such that∫
Ω

∂u
∂t · v + ((u · ∇)u) · v + ν∇u · ∇v dx = 0 ∀v ∈ V0. (3)

For simplicity, use backward Euler in time. At each timestep find un+1 ∈ V0 such that:∫
Ω

un+1 − un

dt · v + ((un+1 · ∇)un+1) · v + ν∇un+1 · ∇v dx = 0 ∀v ∈ V0. (4)

9

Burgers Equation in code

1 from firedrake import *
2 n = 30
3 mesh = UnitSquareMesh(n, n)
4 V = VectorFunctionSpace(mesh, "CG", 2)
5 u_ = Function(V, name="Velocity")
6 u = Function(V, name="VelocityNext")
7 v = TestFunction(V)
8 x = SpatialCoordinate(mesh)
9 ic = project(as_vector([sin(pi*x[0]), 0]), V)

10 u_.assign(ic)
11 u.assign(ic)
12 nu = 0.0001
13 timestep = 1.0/n
14 F = (inner((u - u_)/timestep, v) + inner(dot(u,nabla_grad(u)), v) + nu*inner(grad(u), grad(v)))*dx
15 t = 0.0
16 end = 0.5
17 while (t <= end):
18 solve(F == 0, u) # <= all the magic happens here.
19 u_.assign(u)
20 t += timestep

UFL and the FEniCS language were created by the FEniCS project. See Logg et al. 2012
Automated Solution of Differential Equations by the Finite Element Method

10

Burgers Equation in code

∫
Ω

un+1 − un

dt · v + ((un+1 · ∇)un+1) · v + ν∇un+1 · ∇v dx

(inner((u - u_)/timestep, v) + inner(dot(u,nabla_grad(u)), v) \
+ nu*inner(grad(u), grad(v)))*dx

11

How does the automation work?

We solve PDEs with Newton-like methods:

unext = ucur −
(
∂F(ucur)

∂u

)−1
F(ucur)

So our solver is the composition of a Newton-like algorithm with functions that
assemble the residual F and the Jacobian ∂F/∂u.

12

A little segue into dual spaces

If V is a real Hilbert space with inner product ⟨⟩V then V∗ is the space of bounded
linear functionals V → R.

The form, given u ∈ V: ∫
Ω

u · v dx ∀v ∈ V (5)

is a function V → V∗. This is exactly the form of the residual in a steady PDE.

13

solve is Differentiable Programming!

This is exactly Meijer’s conception of differentiable programming. F is a differentiable
operator and the Newton solver is a higher order function.

We can get technical with their signatures:

F : V → V∗ (6)

Newton : (V → V∗) : V → V (7)

14

UFL does the symbolic maths you would do…

We need to differentiate our residual, F with respect to u. How does a computer do
that? Take the nonlinear term from Burgers’ equation as an example. You write:

inner(dot(u,nabla_grad(u)), v)

But the computer sees: inner

dot v

∇

u

15

A little symbolic differentiation

∂(u · ∇u) · v
∂u · ũ =?

inner

dot v

∇

u ũ

16

A little symbolic differentiation

inner

dot v

∇

u

∇

ũ

17

A little symbolic differentiation

inner

dot v

∇

u

+

dotdot

∇

u

∇

ũ

18

A little symbolic differentiation

inner

dot v

∇

u

0+

dotdot

∇

u

∇

ũ

19

A little symbolic differentiation

inner

dot v

∇

u

inner

v+

dotdot

∇

u

∇

ũ

∂(u · ∇u) · v
∂u · ũ = (ũ · ∇u + u · ∇ũ) · v

20

Adjoint PDEs

Turns out scientists and engineers usually solve inverse problems:

• Sensitivity analysis,
• Parameter estimation,
• Design optimisation,
• Data assimilation.

Common to all of these is a requirement to differentiate the model.

This work rests on Pyadjoint by Mitusch, Funke and Dokken, and Dolfin-adjoint by
Farrell, Funke, Ham and Rognes.

21

Adjoining Burgers’

At each timestep find un+1 ∈ V0 such that:∫
Ω

un+1 − un

dt · v + ((un+1 · ∇)un+1) · v + ν∇un+1 · ∇v dx = 0 ∀v ∈ V0. (8)

Let’s write a simple functional:

J(u) =
∫
Ω

u2
t=end + u2

t=0dx

and assume that we want to differentiate this with respect to the initial condition ut=0.
What would that do to our code?

22

Types of derivative

Symbolic differentiation Derivative of all outputs with respect to all inputs at an
arbitrary state.

Forward mode/tangent linear model Derivative of all outputs with respect to one
input at a single given state.

Reverse mode/adjoint/backpropagation Derivative of a single output with respect
to all inputs at a single given state.

23

Differentiation with pyadjoint

1 from firedrake import *
2 from firedrake.adjoint import *
3 continue_annotation()
4 n = 30
5 mesh = UnitSquareMesh(n, n)
6 V = VectorFunctionSpace(mesh, "CG", 2)
7 u_ = Function(V, name="Velocity")
8 u = Function(V, name="VelocityNext")
9 v = TestFunction(V)

10 x = SpatialCoordinate(mesh)
11 ic = project(as_vector([sin(pi*x[0]), 0]), V)
12 u_.assign(ic)
13 u.assign(ic)
14 nu = 0.0001
15 timestep = 1.0/n
16 F = (inner((u - u_)/timestep, v) + inner(dot(u,nabla_grad(u)), v) + nu*inner(grad(u), grad(v)))*dx
17 t = 0.0
18 end = 1.0
19 while (t <= end):
20 solve(F == 0, u)
21 u_.assign(u)
22 t += timestep
23 J = assemble(u*u*dx + ic*ic*dx)
24 compute_gradient(J, Control(ic))24

<Mesh #4>

solve(∫[rest of domain] v u 𝐝𝐱 = ∫[rest of domain] v 𝐬𝐢𝐧(6.283185307179586 x⃗[0]) 𝐝𝐱)

solve(∫[rest of domain] (v (𝐠𝐫𝐚𝐝 w₁₇)[0] w₁₇ + v (w₁₇ + -1 w₁₅) ∕ w₁₉) + (𝐠𝐫𝐚𝐝 v)[0] (𝐠𝐫𝐚𝐝 w₁₇)[0] w₁₈ 𝐝𝐱 = 0)

solve(∫[rest of domain] (v (𝐠𝐫𝐚𝐝 w₁₇)[0] w₁₇ + v (w₁₇ + -1 w₁₅) ∕ w₁₉) + (𝐠𝐫𝐚𝐝 v)[0] (𝐠𝐫𝐚𝐝 w₁₇)[0] w₁₈ 𝐝𝐱 = 0)

solve(∫[rest of domain] (v (𝐠𝐫𝐚𝐝 w₁₇)[0] w₁₇ + v (w₁₇ + -1 w₁₅) ∕ w₁₉) + (𝐠𝐫𝐚𝐝 v)[0] (𝐠𝐫𝐚𝐝 w₁₇)[0] w₁₈ 𝐝𝐱 = 0)

solve(∫[rest of domain] (v (𝐠𝐫𝐚𝐝 w₁₇)[0] w₁₇ + v (w₁₇ + -1 w₁₅) ∕ w₁₉) + (𝐠𝐫𝐚𝐝 v)[0] (𝐠𝐫𝐚𝐝 w₁₇)[0] w₁₈ 𝐝𝐱 = 0)

solve(∫[rest of domain] (v (𝐠𝐫𝐚𝐝 w₁₇)[0] w₁₇ + v (w₁₇ + -1 w₁₅) ∕ w₁₉) + (𝐠𝐫𝐚𝐝 v)[0] (𝐠𝐫𝐚𝐝 w₁₇)[0] w₁₈ 𝐝𝐱 = 0)

solve(∫[rest of domain] (v (𝐠𝐫𝐚𝐝 w₁₇)[0] w₁₇ + v (w₁₇ + -1 w₁₅) ∕ w₁₉) + (𝐠𝐫𝐚𝐝 v)[0] (𝐠𝐫𝐚𝐝 w₁₇)[0] w₁₈ 𝐝𝐱 = 0)

solve(∫[rest of domain] (v (𝐠𝐫𝐚𝐝 w₁₇)[0] w₁₇ + v (w₁₇ + -1 w₁₅) ∕ w₁₉) + (𝐠𝐫𝐚𝐝 v)[0] (𝐠𝐫𝐚𝐝 w₁₇)[0] w₁₈ 𝐝𝐱 = 0)

assemble(∫[rest of domain] w₁₇ w₁₇ 𝐝𝐱)

assemble(∫[rest of domain] w₆ w₆ 𝐝𝐱)

w₆

w₁₇

w₁₇

w₁₇

w₁₇

w₁₇

w₁₇

w₁₇

0.4414965586658571

0.49999999904066006

assign(w₆)

w₁₅

assign(w₁₇)

w₁₇ w₁₈w₁₉

w₁₅

assign(w₁₇)

w₁₅

assign(w₁₇)

w₁₅

assign(w₁₇)

w₁₅

assign(w₁₇)

w₁₅

assign(w₁₇)

w₁₅

assign(w₁₇)

w₁₅

<pyadjoint.adjfloat.AddBlock object at 0x122941450>

0.9414965577065171

25

<Mesh #4>

solve(∫[rest of domain] v u 𝐝𝐱 = ∫[rest of domain] v 𝐬𝐢𝐧(6.283185307179586 x⃗[0]) 𝐝𝐱)

solve(∫[rest of domain] (v (𝐠𝐫𝐚𝐝 w₁₇)[0] w₁₇ + v (w₁₇ + -1 w₁₅) ∕ w₁₉) + (𝐠𝐫𝐚𝐝 v)[0] (𝐠𝐫𝐚𝐝 w₁₇)[0] w₁₈ 𝐝𝐱 = 0)

solve(∫[rest of domain] (v (𝐠𝐫𝐚𝐝 w₁₇)[0] w₁₇ + v (w₁₇ + -1 w₁₅) ∕ w₁₉) + (𝐠𝐫𝐚𝐝 v)[0] (𝐠𝐫𝐚𝐝 w₁₇)[0] w₁₈ 𝐝𝐱 = 0)

solve(∫[rest of domain] (v (𝐠𝐫𝐚𝐝 w₁₇)[0] w₁₇ + v (w₁₇ + -1 w₁₅) ∕ w₁₉) + (𝐠𝐫𝐚𝐝 v)[0] (𝐠𝐫𝐚𝐝 w₁₇)[0] w₁₈ 𝐝𝐱 = 0)

solve(∫[rest of domain] (v (𝐠𝐫𝐚𝐝 w₁₇)[0] w₁₇ + v (w₁₇ + -1 w₁₅) ∕ w₁₉) + (𝐠𝐫𝐚𝐝 v)[0] (𝐠𝐫𝐚𝐝 w₁₇)[0] w₁₈ 𝐝𝐱 = 0)

solve(∫[rest of domain] (v (𝐠𝐫𝐚𝐝 w₁₇)[0] w₁₇ + v (w₁₇ + -1 w₁₅) ∕ w₁₉) + (𝐠𝐫𝐚𝐝 v)[0] (𝐠𝐫𝐚𝐝 w₁₇)[0] w₁₈ 𝐝𝐱 = 0)

solve(∫[rest of domain] (v (𝐠𝐫𝐚𝐝 w₁₇)[0] w₁₇ + v (w₁₇ + -1 w₁₅) ∕ w₁₉) + (𝐠𝐫𝐚𝐝 v)[0] (𝐠𝐫𝐚𝐝 w₁₇)[0] w₁₈ 𝐝𝐱 = 0)

solve(∫[rest of domain] (v (𝐠𝐫𝐚𝐝 w₁₇)[0] w₁₇ + v (w₁₇ + -1 w₁₅) ∕ w₁₉) + (𝐠𝐫𝐚𝐝 v)[0] (𝐠𝐫𝐚𝐝 w₁₇)[0] w₁₈ 𝐝𝐱 = 0)

assemble(∫[rest of domain] w₁₇ w₁₇ 𝐝𝐱)

assemble(∫[rest of domain] w₆ w₆ 𝐝𝐱)

w₆

w₁₇

w₁₇

w₁₇

w₁₇

w₁₇

w₁₇

w₁₇

0.4414965586658571

0.49999999904066006

assign(w₆)

w₁₅

assign(w₁₇)

w₁₇ w₁₈w₁₉

w₁₅

assign(w₁₇)

w₁₅

assign(w₁₇)

w₁₅

assign(w₁₇)

w₁₅

assign(w₁₇)

w₁₅

assign(w₁₇)

w₁₅

assign(w₁₇)

w₁₅

<pyadjoint.adjfloat.AddBlock object at 0x122941450>

0.9414965577065171

26

<Mesh #4>

solve(∫ v u 𝐝𝐱 = { (conj((v_0))) * sin(6.283185307179586 * x[0]) } * dx(<Mesh #4>[everywhere], {}))

solve(∫ (v (∇ w₁₅)[0] w₁₅ + v (w₁₅ + -1 w₁₃) ∕ w₁₇) + (∇ v)[0] (∇ w₁₅)[0] w₁₆ 𝐝𝐱 = 0)

assemble(∫ w₆ w₆ + w₁₅ w₁₅ 𝐝𝐱)

w₆

w₁₅

0.9947019752120255

assign(w₆)

w₁₃

assign(w₁₅)

w₁₅ w₁₆w₁₇

w₁₃

27

An adjoint block

For each operation:

y = f (x) (9)

We compute the adjoint (transpose derivative):

x ′ =

(
∂f
∂x(x)

)∗
y ′ (10)

28

What about that Newton operator?

Solve:

F(u; v) = 0 (11)

the implicit function theorem gives us:

u′ =
(
∂F
∂u (u; ũ, v)

)−∗
λ (12)

=

(
∂F
∂u (u; v, ũ)

)−1
λ (13)

29

Newton as a differentiable operator

Back to the function signatures, expanded for unsteady:

F : V︸︷︷︸
uold

× V︸︷︷︸
unew

→ V∗ (14)

Newton : (V × V → V∗) : V︸︷︷︸
uold

→ V︸︷︷︸
unew

(15)

Newton∗ : (V → V∗) : V︸︷︷︸
uold

× V︸︷︷︸
unew

× V∗︸︷︷︸
u′

new

→ V∗︸︷︷︸
u′

old

(16)

30

This tells us how to expand beyond just PDEs.

Suppose what I need is find u ∈ V such that:

F(u,N(u); v) = 0 ∀v ∈ V∗ (17)

Where F is a PDE residual but N is not. N could be a parametrisation whose value is
give by e.g.:

1. Solving an ODE at each point.
2. Solving an algebraic equation at each point.
3. Evaluating a neural net.

31

The same applies to inverse problems

min
u∈V

∥u − uobs∥+ N(u) (18)

Subject to:
F(u; v) = 0 ∀v ∈ V (19)

Where N is a regularisation term e.g. found by evaluating a neural net.

32

We just need composable differentiable operators

UFL External operators:

1. Symbolic behaviour (given by calculus rules).
2. Numerical implementation (not UFL’s problem).

33

Just a few more arrows

UFL is the Unified Form Language:

V × W → R (20)

but the external operators we’re interested in aren’t (obviously) forms:

V → W (21)

34

Currying

A really simple idea: we can apply function arguments one at a time:

V × W → R ≡ V → (W → R) (22)

≡ V → W∗ (23)

So any form is an operator into the dual space of its last argument.

35

Currying

A really simple idea: we can apply function arguments one at a time:

V × W → R ≡ V → (W → R) (22)

≡ V → W∗ (23)

So any form is an operator into the dual space of its last argument.

35

But we need the other direction

Happily, all the spaces we care about are reflexive:

V ⇔ V∗∗ (≡ V∗ → R) (24)

by identifying v∗∗ ∈ V∗∗ with v ∈ V such that:

v∗∗(u∗) = u∗(v) ∀u∗ ∈ V∗ (25)

Hence:

V → W ≡ V → W∗∗ (26)
≡ V → (W∗ → R) (27)
≡ V × W∗ → R (28)

36

But we need the other direction

Happily, all the spaces we care about are reflexive:

V ⇔ V∗∗ (≡ V∗ → R) (24)

by identifying v∗∗ ∈ V∗∗ with v ∈ V such that:

v∗∗(u∗) = u∗(v) ∀u∗ ∈ V∗ (25)

Hence:

V → W ≡ V → W∗∗ (26)
≡ V → (W∗ → R) (27)
≡ V × W∗ → R (28)

36

UFL external operator

1 X = FunctionSpace(...)
2 V = FunctionSpace(...)
3 u = Coefficient(V)
4 m = Coefficient(V)
5 v = TestFunction(V)
6 uhat = TrialFunction(V)
7
8 # N : V x V x V∗ -> R
9 # u, m, v∗ -> N(u, m; v∗)

10 N = ExternalOperator(u, m, function_space=X)
11
12 # Define a given form F
13 F = u * N * v * dx
14
15 # Symbolically compute the derivative ∂N(u,m;û,v∗)

∂u
16 dNdu = derivative(N, u, uhat)
17
18 # Symbolically compute the derivative dF

du
19 dFdu = derivative(F, u, uhat)

37

External operators obey the right symbolic rules.

UFL expression ExternalOperator Derivatives Argument slots Output type
N N(u,m; v∗) (0, 0) (v∗,) Coefficient

dNdu = derivative(N, u, û) ∂N(u,m;û,v∗)
∂u (1, 0) (v∗, û) Matrix

dNdm = derivative(N,m, m̂) ∂N(u,m;m̂,v∗)
∂m (0, 1) (v∗, m̂) Matrix

action(dNdu,w) ∂N(u,m;w,v∗)
∂u (1, 0) (v∗,w) Coefficient

adjoint(dNdm) ∂N(u,m;v∗,m̂)
∂m (0, 1) (m̂, v∗) Matrix

action(adjoint(dNdm), ṽ) ∂N(u,m;ṽ,m̂)
∂m (0, 1) (m̂, ṽ) Coefficient

38

The user provides the implementation

1 class MyExternalOperator(AbstractExternalOperator):
2 def __init__(self, *args, **kwargs):
3 ...
4 @assemble_method((0, 0), (0,))
5 # or @assemble_method(0, (0,))
6 def N(self, *args, *kwargs):
7 """Evaluate my external operator N"""
8 ...
9 @assemble_method((1, 0), (0, 1))

10 def dNdu(self, *args, **kwargs):
11 """Evaluate dNdu"""
12 ...
13 @assemble_method((1, 0), (0, None))
14 def dNdu_action(self, *args, **kwargs):
15 """Evaluate the action of dNdu"""
16 ...
17 @assemble_method((0, 1), (1, 0))
18 def dNdm_adjoint(self, *args, **kwargs):
19 """Evaluate dNdm*"""
20 ...
21 @assemble_method((0, 1), (None, 0))
22 def dNdm_adjoint_action(self, *args, **kwargs):
23 """Evaluate the action of dNdm*"""
24 ...

39

Suppose we want to define a neural net operator.

40

Suppose we want to define a neural net operator.

PyTorch Firedrake
f(xP; θ) N(xF; v∗)

jacobian(f, xP)
J = derivative(N, xF)

assemble(J)
jvp(f, xP, zP) assemble(action(J, zF))

vjp(f, xP, zP) assemble(action(adjoint(J), zF))

hvp(f, xP, zP)
H = derivative(J, xF)

assemble(action(H, zF))

vhp(f, xP, zP) assemble(action(adjoint(H), zF))

Turns out PyTorch has all of our operators.

41

PyTorch operator

1 import torch
2 from torch.autograd.functional import jvp
3 ...
4 class PytorchOperator(MLOperator):
5 ...
6 @assemble_method(0, (0,))
7 def forward(self, *args, **kwargs):
8 V = self.function_space()
9 xF, _ = self.ufl_operands

10 # Convert input to PyTorch
11 xP = self.ml_backend.to_ml_backend(xF)
12 # Forward pass
13 yP = self.model(xP)
14 # Convert output to Firedrake
15 yF = self.ml_backend.from_ml_backend(yP, V)
16 return yF

17 ...

42

A simple tomography example

min
c∈P

1
2∥φ− φobs∥V + αR(c) (29)

subject to:

F(φ, c; v) = 0 ∀v ∈ V (30)

43

Tomography code

1 from firedrake import *
2 from firedrake_adjoint import *
3
4 ...
5 # Get a pre-trained PyTorch model
6 model = ...
7 # Define the external operator from the model
8 pytorch_op = neuralnet(model, function_space=...)
9 N = pytorch_op(vel)

10
11 # Solve the forward problem defined by equation (??)
12 solve(F(c, phi, v) == 0, phi, ...)
13 # Assemble the cost function:
14 J = assemble(0.5*(inner(phi-phi_obs, phi-phi_obs) +
15 alpha*inner(N, N))*dx)
16
17 # Optimise the problem
18 Jhat = ReducedFunctional(J, Control(c))
19 c_opt = minimize(Jhat, method="L-BFGS-B", tol=1.0e-7,
20 options={"disp": True, "maxiter" : 20})

44

The only computational result in this talk

Recovered wave speed c as a function of position (x, z): exact velocity (upper left),
without regularisation (upper right), Tikhonov regulariser (lower left), neural
network-based regulariser (lower right).

45

Other composable abstraction layers in and around Firedrake:

Fireshape Shape optimisation (Alberto Paganini, Leicester)
Deflated continuation Finding multiple solutions to nonlinear PDEs (Patrick Farrell,

Oxford)
Point data operators Interact with real data and have first class point sources

(Reuben Nixon-Hill)

46

47

