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Observation

Numerous practical (engineering) problems can be cast
as the following optimization problems

LP: : T

min ¢ x
st. Ax =0,
x > 0.
QP: min ¢!z + %ZCTQZC
s.t. Ax = b,
x > 0.
SDP:
min C e X
S.t AX = b,
X >0

where X € SR"*",
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Logarithmic Barrier Functions
For the nonnegativity constraint {x € R, x >0} use f : R — R

+00 otherwise.

For the quadratic cone
Ky={(z.t): 2 € R"" 1 teR, t* > |z|* t >0},
use f i R'"— R , ,
_ ) —In(t* — ||z if J|x|| <t
ﬂ%@{+m< J#l%) i 1]

CI'WI1se.

For the cone SR"_ﬁxn of pos. definite matrices, use f : SR"}FX” — R

+00 otherwise.
LP: Replace x >0 with —pu 2?21 Inx;.
SDP: Replace X = 0 with —pu Z?’:lln Aj = —,uln(H?’:l Aj).
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IPM Framework

e use logarithmic barrier to “replace” the inequality x > 0
e write down the first-order optimality conditions
e apply Newton method to FOC

—In x

Enjoyable Features of IPMs
e solve LP, QP, NLP, SOCP, SDP

e deliver polynomial complexity and unequalled efliciency
e are well suited to large scale optimization
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Why IPMs? Why Logarithmic Barrier?

The use of logarithmic barrier function (in LP) has several enjoyable
consequences:

e 1t is a self-concordant barrier

e it is mildly nonlinear hence Newton method can approximate
it very accurately

e it transforms a difficult equation
XSe=0, (ie, z;-5;=0 Vj)
Into an easier one:
XSe=pe, (ie, zj-s;=p Vj)

There is no need to “guess” the activity of variables.
It will be gradually revealed as p approaches zero.
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Computational view of IPMs (for LP)

Primal Dual
min ¢z max  bly
st. Ax =0, st. Aly+s=c¢
x > 0; s > 0.
At each iteration of IPM solve
ol A | [Ax| | f
A 0 AV N I

where ® = X S~ lisan ill conditioned diagonal scaling matrix.

Eliminate Ax from the first equation and get
(A0AT) Ay = h.

At optimality: some elements ©; ~ 0, others ©; — oo.
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Overarching Feature of IPMs

They possess an unequalled ability to identify
the “essential subspace”
in which the optimal solution s hidden.
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Sparse Approximations

e Statistics: Estimate x from observations

e Machine Learning: Classifications, SVMs, etc

e Compressed Sensing (Signal Processing)

e Sparse portfolio selection

e Inverse Problems

o Wavelet-based signal /image reconstruction & restoration

e (lassification models for funct’l Magnetic Resonance Imaging

Such problems lead to some dense, often structured, possibly very
large optimization instances (LP, QP or NLP):

ming f(x) + 71||z||1 + wl|Lz|;
s.t. Ax = b.
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¢1-regularization

min 7l + ¢(z)

think of LASSO:
min f(z) =zl + | Az - b}

Unconstrained optimization = easy
Serious Issue: nondifferentiability of |.|;;

T'wo possible tricks:
e Splitting x =u —v with u,v >0
e Smoothing with pseudo-Huber approximation

replaces ||z||; with ¥, () \/,u +a: —
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Continuation

Embed inexact Newton Method into a homotopy approach:
e Inequalities u >0, v >0 — use IPM

replace z > 0 with —ulogz and drive p to zero.

e pseudo-Huber regression — use continuation
replace |z;| with pu(1/1+=% —1) and drive p to zero.

Questions:
e Theory?

e Practice?
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1st-order methods vs 2nd-order methods

The 2nd-order methods are sometimes criticised as unsuitable:
“computing/using the 2nd-order information is too expensive”.

An unfounded criticism based on an unfair comparison:

specialised 1st-order methods compared with
general (of-the-shelf) 2nd-order methods.

The 1st-order methods have clear drawbacks:
e they struggle with accuracy, and
e they work only for trivial, well conditioned problems.

The specialised 2nd-order methods
overcome these drawbacks and are very competitive.

This talk will demonstrate why:.
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How to Specialize an IPM?

e Simplify the linear algebra:
— use inexact Newton method
— build efficient preconditioners for iterative methods
— use matriz-free IPM

e Exploit expected sparsity of the solution
— ignore “long” matrix A
— do not update all variables x
— use column-generation-type approach

Gondzio,
Convergence analysis of an inexact feasible IPM for convex QP, SIOPT 23 (2013) No 3, 1510-1527.

Gondzio, Pougkakiotis and Pearson,
General-purpose preconditioning for regularized interior point methods, COAP 83 (2022) pp. 727-757.

Zanetti and Gondzio,
A new stopping criterion for Krylov solvers applied in interior point methods, SISC 45 (2023), No. 2.

Zanetti and Gondzio,

An interior-point-inspired algorithm for linear programs arising in discrete optimal transport,
INFORMS J on Computing 35 (2023) No 5 pp. 1061-1078. https://doi.org/10.1287/ijoc.2022.0184

Copenhagen, Thursday 16 November 2023 14



J . GOndZiO IPMs: Sparse Approximations & Optimal Transport

Main Tool: Inexact Newton Method

Replace an eract Newton direction
Ve f(x)Az = =V f ()
with an inexact one:
V2 f(x)Az = -V f(z)+r,
where the residual v is small: ||| < n||Vf(x)||, n € (0,1).

The NLP community usually writes it as:

|V f(@) Az + V()2 < V@), ne01).

Bellavia,
Inexact Interior Point Method, JOTA 96 (1998) 109-121.

Dembo, Eisenstat & Steihaug,
Inexact Newton Methods, STAM J. on Numerical Analysis 19 (1982) 400-408.
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Theorem: Suppose the feasible IPM for QP is used.
If the method operates in the small neighbourhood

No(8) = {(z,y,5) € F': [|XSe — pella < Ou}

and uses the inexact Newton direction with 77 = 0.3, then it con-
verges 1n at most

K = O(v/n In(1/€)) iterations.
If the method operates in the symmetric neighbourhood

Ns(v) = {(z,y,8) € F':yp < x5 < (1/7)u}

and uses the ineract Newton direction with 1 = 0.05, then it
converges 1 at most

K =0O(n In(1/e)) iterations.
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“Long” LP — use Column Generation (CG)
Replace an LP with a “shorter” one (N C N):

Master LP Restricted Master LP

min - ) ien G min Zjeﬁ CiT

s.t. DieN Ajrj=0b s.t. Zjeﬁ Ajr;=10
zj >0, VjeN; x; >0, VjeN.

1. set LB = —o0, UB = o0, gap = 00, € = 0.5;

2. while (gap > 9) do .
: find a well-centred e-opt (A, @) of the RMP;

UB = min{UB, gRMP};

call the oracle with the query point u;

LB = max{LB, xZsp + b a};

gap = (UB — LB)/(1 + [UB|);

€= min{gmaxv gap/D}a

if (Zgp < 0) then add new columns to the RMP;

10. end (while)
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IPM Specialized for Column Generation

e [gnore “long” matrix A; work with “short” A and x
— do not update all variables x; use “sparse” x

e Use simplex-type pricing mechanism (Oracle in CG)
—— update dual slacks only for a subset of variables x

e Simplify normal equations
N T . T
o rep_lace D el 0jA;A; with ZjeN 0jA;A;
where IV is likely to contain the “sparse” solution set

e Build a preconditioner for the normal equations matrix
— keep 1t sparse at all times
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Use IPMs in Sparse Approximations

Problems of the form

min f(x) + 7 ||z||1 + 7| Lz
s.t. Az =0b.

e Sparse portiolio selection
comparison with Split Bregman method

e Classification models for funct’l Magnetic Resonance Imaging
comparison with FISTA and ADMM

e T'V-based Poisson Image Restoration
comparison with PDAL

e Linear Classification via Regularized Logistic Regression
comparison with newGLMNET and ADMM

De Simone, di Serafino, Gondzio, Pougkakiotis, Viola,
Sparse Approximations with Interior Point Methods,

SIAM Review 64 (2022) pp. 954-988.  https://doi.org/10.1137/21M1401103
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Modeling trick

min f(z) + 7 ||z||; + 7| Lz

X

s.t. Az =0,
where L € R A e RM*1 pe R™ m < n.
Let || = 27 + 2, where 27 = max{z,0} and 2~ = max{—=x,0}.

Set d = Lz € R! and also write |d| = dT 4+ d~.
New formulation:

min flat —a ) +relzt +ela™) + 7’2(6?61+ + eérd_)
xto—.dT,d”

s.t. Azt —27)=b

LixT —x7)=d" —d~
_7 d+7 d_ 2 07

where e, € RP is a vector of all 1s

Larger smooth problem, but IPMs are able to efliciently handle
large sets of linear equality and non-negativity constraints!
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Binary Classification of fMRI Data

1 .
min — || Dw — §||* + 7 [|w]|1 + 7 || Lw|)
w28

where: 71,79 >0, |[Lw]||; is a discrete anisotropic TV of w,

and L = [LL Lg LI ¢ R4 are the first-order forward finite
differences in z, y, z.

Baldassarre, Pontil & Mourao-Miranda,
Sparsity Is Better with Stability: Combining Accuracy and Stability for Model Selection in Brain Decoding,
Frontiers of Neuroscience 2017. https://doi.org/10.3389/fnins.2017.00062
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Classification models for {MRI
Comparison of IPM, FISTA and ADMM (opt tol 107°). We report:

o classification accuracy (ACC),
o corrected pairwise overlap (CORR OVR);
measures the “stability” of each voxel selection,

e solution density (DEN).

Algorithm | 7 =7 ACC CORR OVR DEN
IP-PMM 107%2]86.16 £ 7.11 | 43.47+ 9.09 || 20.56 + 6.63
5-1072|84.90+£4.80 | 62.704+10.39 | 3.77+£0.84
1071 82.294+6.22 | 82.60+ 9.24 || 2494+0.34 good
FISTA 1072 86.90 + 5.01 5.43+ 0.43 | 88.97+0.71
5-1072 | 84.154+5.92| 65.50+ 2.68 | 19.36 £ 0.86
1071 81.62+7.58 | 80.44+ 5.72| 5.14+0.44 acceptable
ADMM 1072 ] 86.46 + 6.91 0.03 £ 0.01 | 98.70 £0.03
5-1072 | 85.57 £ 5.37 0.15+ 0.04 | 97.97 £ 0.05
1071 | 82.07+6.51 0.26 = 0.13 ] 97.50 £ 0.19 unacceptable

We want. ACC and CORR OVR close to 100, and small DEN.
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Classification models for fMRI (cont’d)

Performance comparison in terms of elapsed time:

IP-PMM — 71 = 19 = le-1 FISTA — 11 = 15 = le-1
A
—~— e ——te
80 N ,_,—f 80 - e :
/ , E——
ﬂr \ / e ek
60 | / L o ——ACC 60 ACC
e~ . — - DEN — - DEN
40| A ;, —-—-CORR OVR 40! —-—-CORR OVR
v\,
'
20 Al 20 -
I‘ B, e
’ S
'l S T ——
0 R —— &£ i 0 L . . . . L |
0 5 10 15 20 25 30 0 5 10 15 20 25 30
time (m) time (m)

Evolution of ACC, DEN and CORR OVR with time;
[P-PMM (left) and FISTA (right).

We report average measures with 95% confidence intervals.
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Optimal Transport

Significant research interest:

Gaspard Monge (1781)
Leonid Kantorovich (1942) Nobel Prize in 1975
Alessio Figalli (2008) Fields Medal in 2018

F. Santambrogio.
Optimal Transport for Applied Mathematicians, Birkhauser Basel,
2016.

G. Peyré and M. Cuturi,
Computational Optimal Transport: With Applications to Data
Science. Foundations and Trends in Machine Learning 11 (2019)

No 5-6, pp. 355-607.

Discrete OT problem has an obvious connection to
Network Flow Problem
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Small OT Example

Move the mass in the red configuration into the blue configuration.
Right figure: the corresponding bipartite graph. — Sparse solution!

j

> >

I//
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Discrete Optimal Transport
We write the OT problem as a standard LP:

min CTp

.U, ]n®e% b )
p =0,

where ® denotes the Kronecker product,

c € R"" and p € R"" are the vectorized versions of C and P,
respectively, ¢ = vec(C) and p = vec(P).

LP with m + n constraints and m X n variables.

Zanetti and Gondzio,

An interior-point-inspired algorithm for linear programs arising in discrete optimal transport,
INFORMS J on Computing 35 (2023) No 5 pp. 1061-1078. https://doi.org/10.1287/ijoc.2022.0184

Cipolla, Gondzio and Zanetti,
A regularized interior point method for sparse optimal transport on graphs, (submitted 3 March 2023, revised
11 July 2023). https://arxiv.org/abs/2307.05186
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Graph interpretation of Optimal Transport

OT problem is an example of an LP:

min CTZC

st. Ax =0,
x > 0.

Constraint matrix A€ R™*™ is a graph node-arc incidence matrix

e LEvery column of A has only two nonzero entries
e A is very sparse

e But AA! may be quite dense

The main computational effort of IPM for LP (for OT) is:

e Building AOAL where O is a diagonal matrix
o Solving equations with A© AL
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Structure of 4 and A0A!
Restricted Master Problem, NV

Constraint matrix

| H
| = u
| |
A =
|| | =
H N
H B
Normal equations Schur complement
H H N H_u
I. | .l .I.‘
|| H N |
- l=l ‘ H
. Il .I H
H_ N || . H
Ll | .I.I
HEN

(Full) Master, N

Constraint matrix
[ | | | ] |

Normal equations Schur complements

Copenhagen, Thursday 16 November 2023
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Test examples from DOTmark collection

i

1ass 1 Clas ‘ Cl.rass 3

3 | b

Class 6 Class 7 Class 8 Class 9 1ass

For the resolution r, the LP has or? constraints and r* variables.
For r = 32: 2.048 constraints and 1 million variables:

For r = 064: 8,192 constraints and 16.8 million variables:
For r = 128: 32,768 constraints and 268.4 million variables;
For r = 256: 131,072 constraints and 4.295 billion variables.
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Discrete Optimal Transport (cont’d)

DOTmark test collection (dense graphs, sparse solutions):
Schrieber, Schuhmacher, and Gottschlich,
DOTmark - A Benchmark for Discrete Optimal Transport, I[EEE Access, 5 (2017), pp. 271-282.

Softwares compared:

e Cuturi,
Sinkhorn distances: Lightspeed computation of optimal transport,
Proc. NIPS, (2013), pp. 2292-2300.

e Gottschlich and Schuhmacher,
The Shortlist Method for Fast Computation of the Earth Mover’s Distance and Finding Optimal
Solutions to Transportation Problems, PLoS ONE, 9 (2014), p. e110214.

e Merigot,
A Multiscale Approach to Optimal Transport,
Computer Graphics Forum, 30 (2011), pp. 1583-1592.

e Network Simplex Method, IBM ILOG CPLEX.
https://www.ibm.com/analytics/cplex-optimizer.

Cplex seems to be the most reliable and usually the festest of them.
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CPU time of SparseIPM (1-norm, 128 pixels)
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Scalability of 3 solvers (r = 256)

[ ]
Comparison:
[ ]
P Class 1 4 Class 2
10 : 10 :
[ |
10° A 10% ¢ A
102} 102} L
-".;._.- . .:.‘_.:.
10" ‘ 10" ¢ ‘
10°F A cpex |7 100
® Lemon
[ | IPM
10" 10~
10° 108 1010 108 108 1010

Class 3

104

103 -

102-

101 L

100 F .

:

-
0
o
o
&

-
-+
.‘
-
-
&

10~
10°

Cplex (Simplex Method for Network Problems)

LEMON (Specialized Network Algorithm)
SparselPM for Discrete OT
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Optimal Transport on Sparse Graphs

DOTmark test collection (dense graphs, sparse solutions)

number of nodes m = 22,

number of edges n = r4,

where r is the picture resolution.
Case when m < n. Very “long” LP.

But what happens on sparse graphs with sparse solutions?
number of nodes m,

number of edges n = am,

where « is the average number of edges per node, say, 2 < a < 10.
Case when m < m. More “usual” LP shape.
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Network Structure

e Discrete OT is equivalent to a single commodity network flow
—— LP matrix A is a graph node-arc incidence matrix

e Use special form of normal equations Zj\;l HjAjA]T
— exploit its Laplacian structure

o Use IPM matrix © = XS ! to select a subset of variables
and simplify normal equations

— replace Zé\le HjAjAJT with ) e s HjAjAT,
where & contains variables with “large” 6,

e EITHER use it as an approximation of the normal equations
OR use it to precondition normal equations

Cipolla, Gondzio and Zanetti,
A regularized interior point method for sparse optimal transport on graphs, (submitted 3 March 2023, revised

11 July 2023). https://arxiv.org/abs/2307.05186
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Large Sparse Graphs

Graphs from the SuiteSparse matrix collection

Name Nodes Edges Density

delaunay-n23 8,388,608 50,331,568 6.0
great-britain-osm 7,733,822 16,313,034 2.1
hugetric-00010 6,592,765 19,771,708 3.0
hugetric-00020 7,122,792 21,361,554 3.0
hugetrace-00010 12,057,441 36,164,358 3.0
hugetrace-00020 16,002,413 47,997,626 3.0
NACAOO15 1,039,183 6,229,636 6.0

nc2010 288,987 1,416,620 4.9
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PS-IPM vs LEMON

SuiteSparse Test Problems

= | | | | | | | P
- | @PS-IPM o .
- |#Lemon o o -
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e P | | | | | | =

o\0 o2 em 23 A0 20 A0 0
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PS-IPM vs LEMON (cont’d)

Performance comparison in terms of elapsed time:

5 5
10 ° /ﬁ 10 °
4 7 ] ’
10 /s s
/ /' ./
P .
J/ 4/' “ //
108 -
o 104 b -
é'/ L s
/- s
102 v s v /‘
e e -
— -, e - V
» 7 P W -
~ . -
[ 1 ’v 4 — V2 -
IS 10 .- / @ 7
= Be A~ > L < 9
> -V e 2 10’ -
I3 = s e
g 10° v e = o0 - v
~ e -
< 7 4
. Ve Pt
-1 L
10 V’/ ‘ //7/
S
> - 102 C ///
10" s -
3 7
s ] o
/ @® lemon |- v// @® Lemon
1073 e — — m=206 |+ v — — m=207
v Vv PSIPM | ] V¥ PSIPM
—-—-m=1.28]] PY —-—-m=140
10 10'
108 104 10° 108 107 108 108 107 108

Number of edges

Random graphs
LEMON: m = 2.06
PS-IPM: m = 1.28

Number of edges

SuiteSparse graphs
LEMON: m = 2.07
PS-IPM: m = 1.40
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Conclusions

e [PMs are well-suited to solving large scale
optimization problems

— enjoy predictable behaviour
— delwer high accuracy

e When applied to sparse approximations, IPMs
— compete with/outperform the 1st-order methods

e When applied to optimal transport problems, IPMs
— are the methods to beat

IPMs possess an unequalled ability to identify
the “essential subspace”
in which the optimal solution s hidden.
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