
1/130

Low-Rank Matrix and Tensor
Approximation

Daniel Kressner

Institute of Mathematics
daniel.kressner@epfl.ch

http://anchp.epfl.ch

Computational Mathematics for Data Science
DTU 2023

http://anchp.epfl.ch


2/130

From http://www.niemanlab.org

... his [Aleksandr Kogan’s]
message went on to confirm
that his approach was indeed
similar to SVD or other matrix
factorization methods, like in
the Netflix Prize competi-
tion, and the Kosinki-Stillwell-
Graepel Facebook model.
Dimensionality reduction of
Facebook data was the core
of his model.

http://www.niemanlab.org
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Leaked Internal Google Document, May 2023
But the uncomfortable truth
is, we aren’t positioned to
win this arms race and nei-
ther is OpenAI. While we’ve
been squabbling, a third fac-
tion has been quietly eat-
ing our lunch... Open-source
models are faster, more cus-
tomizable, more private, and
pound-for-pound more capa-
ble. They are doing things
with $100 and 13B params
that we struggle with at $10M
and 540B. And they are do-
ing so in weeks, not months.
...

In both cases, low-cost public involvement was enabled by a vastly
cheaper mechanism for fine tuning called low rank adaptation, or
LoRA [arXiv:2106.09685] ...
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Rest of this tutorial

1. Foundations
Low-rank matrix approximation algorithms

2. Deterministic Sampling
3. Stochastic Sampling
4. Tensors
5. Alternating Optimization
6. Riemannian Optimization



5/130

1. Foundations
▶ Matrix rank
▶ SVD
▶ Best low-rank approximation
▶ Low-rank and subspace approximation
▶ When (not) to expect good low-rank approximations
▶ Stability considerations

References: [Golub/Van Loan’2013]1, [Horn/Johnson’2013]2

1G. H. Golub and C. F. Van Loan. Matrix computations. Johns Hopkins University
Press, Baltimore, MD, 2013.

2R. A. Horn and C. R. Johnson. Matrix analysis. Cambridge University Press,
Cambridge, 2013.
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Rank and basic properties
Let A ∈ Rm×n. Then

rank(A) := dim(range(A)).

Quiz
1. What is the rank of this matrix?

2. What is the rank of randn(40)?
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Rank and matrix factorizations
Lemma. A matrix A ∈ Rm×n of rank r admits a factorization of the
form

A = BCT , B ∈ Rm×r , C ∈ Rn×r .

We say that A has low rank if rank(A)≪ m,n.
Illustration of low-rank factorization:

A BCT

#entries mn mr + nr
▶ Generically (and in most applications), A has full rank, that is,

rank(A) = min{m,n}.
▶ Aim instead at approximating A by a low-rank matrix.
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The singular value decomposition
Theorem (SVD). Let A ∈ Rm×n with m ≥ n. Then there are
orthogonal matrices U ∈ Rm×m and V ∈ Rn×n such that

A = UΣV T , with Σ =


σ1

. . .

σn
0

 ∈ Rm×n

and σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0.

▶ σ1, . . . , σn are called singular values
▶ u1, . . . ,un are called left singular vectors
▶ v1, . . . , vn are called right singular vectors
▶ Avi = σiui , AT ui = σivi for i = 1, . . . ,n.
▶ Singular values are always uniquely defined by A.
▶ Singular values are never unique. If σ1 > σ2 > · · ·σn > 0 then

unique up to ui ← ±ui , vi ← ±vi .
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The singular value decomposition
Theorem (SVD). Let A ∈ Rm×n with m ≥ n. Then there are
orthogonal matrices U ∈ Rm×m and V ∈ Rn×n such that

A = UΣV T , with Σ =


σ1

. . .

σn
0

 ∈ Rm×n

and σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0.

Quiz: Which properties of A can be extracted from the SVD?

r = rank(A) = number of nonzero singular values of A,
kernel(A) = span{vr+1, . . . , vn}, range(A) = span{u1, . . . ,ur}
∥A∥2 = σ1, ∥A†∥2 = 1/σr , ∥A∥2

F = σ2
1 + · · ·+ σ2

n

σ2
1 , . . . , σ

2
n eigenvalues of AAT and AT A.
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SVD: Computational aspects
▶ Standard implementations (LAPACK, Matlab’s svd, ...) require
O(mn2) operations to compute (economy size) SVD of m × n
matrix A.

▶ Beware of roundoff error when interpreting singular value plots.
Example: semilogy(svd(hilb(100)))

0 20 40 60 80 100
10

-20

10
-10

10
0

▶ Kink is caused by roundoff error and does not reflect true behavior
of singular values.

▶ Exact singular values are known to decay exponentially.3
▶ Sometimes more accuracy possible.4.

3Beckermann, B. The condition number of real Vandermonde, Krylov and positive
definite Hankel matrices. Numer. Math. 85 (2000), no. 4, 553–577.

4Drmač, Z.; Veselić, K. New fast and accurate Jacobi SVD algorithm. I. SIAM J.
Matrix Anal. Appl. 29 (2007), no. 4, 1322–1342
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Best low-rank approximation

For k < n, partition SVD as

UΣV T =
[
Uk ∗

] [Σk 0
0 ∗

] [
Vk ∗

]T
, Σk =

σ1
. . .

σk


Rank-k truncation:

A ≈ Tk (A) := UkΣk V T
k .

has rank at most k . By unitary invariance of ∥ · ∥ ∈ {∥ · ∥2, ∥ · ∥F}:

∥Tk (A)− A∥ =
∥∥diag(0, . . . ,0, σk+1, . . . , σn)

∥∥.
In particular:

∥A− Tk (A)∥2 = σk+1, ∥A− Tk (A)∥F =
√
σ2

k+1 + · · ·+ σ2
n .

Nearly equal iff singular values decay quickly.
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Best low-rank approximation
Theorem (Schmidt-Mirsky). Let A ∈ Rm×n. Then

∥A− Tk (A)∥ = min
{
∥A− B∥ : B ∈ Rm×n has rank at most k

}
holds for any unitarily invariant norm ∥ · ∥.

Proof: See Section 7.4.9 in [Horn/Johnson’2013] for general case.
Proof for ∥ · ∥F : Let σ(A), σ(B) denote the vectors of singular values of
A and B and use the matrix inner product ⟨A,B⟩ = trace(BT A). Then
von Neumann’s trace inequality states that

|⟨A,B⟩| ≤ ⟨σ(A), σ(B)⟩

Hence,

∥A− B∥2
F = ⟨A− B,A− B⟩ = ∥A∥2

F − 2⟨A,B⟩+ ∥B∥2
F

≥ ∥σ(A)∥2
2 − 2⟨σ(A), σ(B)⟩+ ∥σ(B)∥2

2

=
n∑

i=1

(σi(A)− σi(B))2 ≥ ∥A− Tk (A)∥2
F .
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Best low-rank approximation
Theorem (Schmidt-Mirsky). Let A ∈ Rm×n. Then

∥A− Tk (A)∥ = min
{
∥A− B∥ : B ∈ Rm×n has rank at most k

}
holds for any unitarily invariant norm ∥ · ∥.
Quiz. Is the best rank-k approximation unique if σk > σk+1?

▶ If σk > σk+1 best rank-k approximation unique wrt ∥ · ∥F .
▶ Wrt ∥ · ∥2 only unique if σk+1 = 0. For example, diag(2,1, ϵ) with

0 < ϵ < 1 has infinitely many best rank-two approximations:2 0 0
0 1 0
0 0 0

 ,

2− ϵ/2 0 0
0 1− ϵ/2 0
0 0 0

 ,

2− ϵ/3 0 0
0 1− ϵ/3 0
0 0 1

 , . . . .

▶ If σk = σk+1 best rank-k approximation never unique.
I3 has several best rank-two approximations:1 0 0

0 1 0
0 0 0

 ,

1 0 0
0 0 0
0 0 1

 ,

0 0 0
0 1 0
0 0 1

 .
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Some uses of low-rank approximation

▶ Data compression.
▶ Fast solvers for linear systems: Kernel matrices, integral

operators, under the hood of sparse direct solvers (MUMPS,
PaStiX), . . .

▶ Fast solvers for dynamical systems: Dynamical low-rank method.
▶ Low-rank compression / training of neural nets.
▶ Defeating quantum supremacy claims by Google/IBM.

Science’2022:
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Approximating the range of a matrix

Aim at finding a matrix Q ∈ Rm×k with orthonormal columns such that

range(Q) ≈ range(A).

QQT is orthogonal projector onto range(Q) ; Aim at solving

min
{
∥A−QQT A∥ : QT Q = Ik

}
for ∥ · ∥ ∈ {∥ · ∥2, ∥ · ∥F}. Because rank(QQT A) ≤ k ,

∥A−QQT A∥ ≥ ∥A− Tk (A)∥.

Setting Q = Uk one obtains

Uk UT
k A = Uk UT

k UΣV T = UkΣk V T
k = Tk (A).

; Q = Uk is optimal.
Low-rank approximation and range approximation
are essentially the same tasks!
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Two popular uses of range approximation

Principal component analysis (PCA):
Dominant left singular vectors of data
matrix X = [x1, . . . , xn] (with mean sub-
tracted) provide directions of maximum
variance, 2nd maximum variance, etc.

Proper orthogonal decomposition
(POD), reduced basis methods: Col-
lect snapshots of time-dependent and/or
parameter-dependent equations and
perform model reduction by projection
to dominant left singular vectors Uk of
snapshot matrix.
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When to expect good low-rank approximations
Smoothness.
Example 1: Snapshot matrix with snapshots depending smoothly on
time/parameter

A =
[
u(t1) u(t2) · · · u(tn)

]
≈

[
p1 p2 · · · pk

]︸ ︷︷ ︸
low-dim. polynomial basis

×


ℓ1(t1) ℓ1(t2) · · · ℓ1(tn)
ℓ2(t1) ℓ2(t2) · · · ℓ2(tn)

...
...

...
ℓ2(t1) ℓ2(t2) · · · ℓ2(tn)


︸ ︷︷ ︸

Vandermonde-like matrix

where u(t) ≈ p(t) = p1ℓ1(t) + · · ·+ pnℓn(t) (polynomial approximation
of degree k in basis of Lagrange polynomials).

If u : [−1,1]→ Rn admits analytic extension to Bernstein ellipse Eρ
(focii ±1 and sum of half axes equal to ρ > 1) then polynomial
approximation implies

σk (A) ≲ max
z∈Eρ

∥u(z)∥2 · ρ−k .

Exponential decay of singular values!
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When to expect good low-rank approximations
Smoothness.
Example 2: Kernel matrix for smooth (low-dimensional) kernel:

K =

κ(x1, x1) · · · κ(x1, xn)
...

...
κ(xn, x1) · · · κ(xn, xn)

 , κ : Ω× Ω→ R.

Hilbert matrix:

K =
[ 1

i + j − 1

]n

i,j=1

Kernel κ(x , y) = 1/(x + y − 1).
0 20 40 60 80 100

10
-20

10
-10

10
0

Exponential singular value decay established through Taylor
expansion [Börm’2010] or exponential sum approximation
[Braess/Hackbusch’2005]:

1
x + y

≈
k∑

i=1

γi exp(βi(x + y)) =
k∑

i=1

γiexp(βix) · exp(βiy).
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When to expect good low-rank approximations

Algebraic structure.
If X satisfies low-rank Sylvester matrix equation:

AX + XB = low rank

and spectra of A,B are disjoint then singular values of X (usually)
decay exponentially5.
▶ Basis of fast solvers for matrix equations.
▶ Captures many structured matrices: Vandermonde, Cauchy,

Pick, . . . matrices, canoncial Krylov bases, . . ..

5Bernhard Beckermann and Alex Townsend. “On the singular values of matrices
with displacement structure”. In: SIAM J. Matrix Anal. Appl. 38.4 (2017),
pp. 1227–1248.
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When not to expect good low-rank approximations
In most over situations:
▶ Kernel matrices with singular/non-smooth kernels
▶ Snapshot matrices for time-dependent / parametrized solutions

featuring a slowly decaying Kolmogoroff N-width.
▶ Images
▶ White noise
▶ . . .

∃ Exceptions to these rules:

Also: Low-rank methods are often used even when there is no
notable singular value decay in, e.g., statistical inference.
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When not to expect good low-rank approximations
Consider kernel matrix

K =

κ(x1, x1) · · · κ(x1, xn)
...

...
κ(xn, x1) · · · κ(xn, xn)

 , κ : D × D → R.

for 1D-kernel κ with diagonal singularity/non-smoothness. Example:

κ(x , y) = exp(−|x − y |), x , y ∈ [0,1]

Function Singular values

0 20 40 60 80 100
10

-3

10
-2

10
-1

10
0

10
1

10
2

10
3
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But not everything is lost..
Block partition K . Level 1:

K =

[
K11 K12
K21 K22

]
=


K11 0 10 20 30 40 50

10
-20

10
-15

10
-10

10
-5

10
0

10
5

0 10 20 30 40 50
10

-20

10
-15

10
-10

10
-5

10
0

10
5

K22


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But not everything is lost..
Block partition K . Level 2:

K =



K11 0 5 10 15 20 25
10

-20

10
-15

10
-10

10
-5

10
0

10
5

0 5 10 15 20 25
10

-20

10
-15

10
-10

10
-5

10
0

10
5

K22 0 10 20 30 40 50
10

-20

10
-15

10
-10

10
-5

10
0

10
5

0 10 20 30 40 50
10

-20

10
-15

10
-10

10
-5

10
0

10
5

K33 0 5 10 15 20 25
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-20

10
-15

10
-10

10
-5

10
0

10
5

0 5 10 15 20 25
10

-20

10
-15

10
-10

10
-5

10
0

10
5

K44


etc. ; HODLR. More general constructions [Hackbusch’2015]:
▶ H-matrices = general recursive block partition.
▶ HSS/H2-matrices impose additional nestedness conditions on

the low-rank factors on different levels of the recursion.
Exciting news: Recovery of such matrices from mat-vec products6.

6D. Halikias and A. Townsend. Structured matrix recovery from matrix-vector
products. arXiv:2212.09841. 2022, J. Levitt and P. G. Martinsson. Linear-complexity
black-box randomized compression of rank-structured matrices. arXiv:2205.02990.
2022.
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Stability considerations
What happens to SVD if A is perturbed by noise (roundoff error, ...)?

Weyl’s inequality:

|σi(A + E)− σi(A)| ≤ ∥E∥2.

Singular values are perfectly well conditioned.
Singular vectors tend to be less stable! Example:

A =

[
1 0
0 1 + ε

]
, E =

[
0 ε
ε −ε

]
.

▶ A has right singular vectors
[
1
0

]
,

[
0
1

]
.

▶ A + E has right singular vectors 1√
2

[
1
1

]
, 1√

2

[
1
−1

]
Wedin’1972: Error in Uk , Vk ≲ ε/[σk (A)− σk+1(A)].

Bad news for stability of low-rank approximation?
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Stability of low-rank approximation
Lemma. Let A ∈ Rm×n have rank ≤ k . Then

∥Tk (A + E)− A∥ ≤ C∥E∥

holds with C = 2 for any unitarily invariant norm ∥ · ∥. For the
Frobenius norm, the constant can be improved to C = (1 +

√
5)/2.

Proof. Schmidt-Mirsky gives ∥Tk (A + E)− (A + E)∥ ≤ ∥E∥. Triangle
inequality implies

∥Tk (A + E)− (A + E) + (A + E)− A∥ ≤ 2∥E∥.

Second part is result by Hackbusch7.

Implication for general matrix A:

∥Tk (A + E)− Tk (A)∥ =
∥∥Tk

(
Tk (A) + (A− Tk (A)) + E

)
− Tk (A)

∥∥
≤ C∥(A− Tk (A)) + E∥ ≤ C(∥A− Tk (A)∥+ ∥E∥).

Perturbations on the level of truncation error pose no danger.

7Hackbusch, W. New estimates for the recursive low-rank truncation of
block-structured matrices. Numer. Math. 132 (2016), no. 2, 303–328
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Low-rank matrix
approximation algorithms

Landscape of algorithms
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Landscape of algorithms
Choice of algorithm for performing low-rank approximation of A
depends critically on how A is accessed:

1. Small matrices: If m,n = O(102), don’t think twice, apply svd.
2. Mat-vecs: A is accessed through matrix-vector products v 7→ Av .

massive dense matrices, sparse matrices, implicit representation
(e.g., through matrix functions, Schur complements, . . .).
Randomized SVD and friends (e.g., block Lanczos)
Talk by Yuji Nakatsukasa

3. Entry-by-entry: Individual entries A(i , j) can be directly computed
but it is too expensive to compute/hold the whole matrix.
kernel matrices, distances matrices, discretizations of nonlocal
equations (integral eqns, fractional diff eqns), . . ..
Sampling-based techniques.

4. Semi-analytical techniques: Polynomial approximation,
exponential sum approximation, Random Fourier features.

5. Implicit: A satisfies linear system/eigenvalue problem/opt
problem/...
Alternating optimization, Riemannian optimization, . . ..
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2. Deterministic sampling
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Sampling based approximation
Aim: Obtain rank-r approximation of m × n matrix A from selected
entries of A.
Two different situations:
▶ Unstructured sampling: Let Ω ⊂ {1, . . . ,m} × {1, . . . ,n}. Solve

min ∥A− BCT∥Ω, ∥M∥2
Ω =

∑
(i,j)∈Ω

m2
ij .

Matrix completion problem solved by general optimization
techniques (ALS, Riemannian optimization, convex relaxation).

▶ Column/row sampling:

Focus of this part.
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Row selection from orthonormal basis
Task. Given orthonormal basis U ∈ Rn×r find a “good” r × r submatrix
of U.
Classical problem already considered by Knuth.8

Quantification of “good”: Smallest singular value not too small.
Some notation:
▶ Given an m × n matrix A and index sets

I = {i1, . . . , ik}, 1 ≤ i1 < i2 < · · · ik ≤ m,

J = {j1, . . . , jℓ}, 1 ≤ j1 < j2 < · · · jℓ ≤ n,

we let

A(I, J) =

ai1,j1 · · · ai1,jn
...

...
aim,j1 · · · aim,jn

 ∈ Rk×ℓ.

The full index set is denoted by :, e.g., A(I, :).
▶ | detA| denotes the volume of a square matrix A.

8Knuth, Donald E. Semioptimal bases for linear dependencies. Linear and
Multilinear Algebra 17 (1985), no. 1, 1–4.
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Row selection from orthonormal basis

Lemma (Maximal volume yields good submatrix)
Let index set I, #I = r , be chosen such that |det(U(I, :))| is
maximized among all r × r submatrices. Then

1
σmin(U(I, :))

≤
√

r(n − r) + 1

Proof.9 W.l.o.g. I = {1, . . . , r}. Consider

Ũ = UU(I, :)−1 =

(
Ir
B

)
.

Because of det Ũ(J, :) = detU(J, :)/ detU(I, :) for any J, submatrix
#J = r , Ũ(I, :) has maximal volume among all r × r submatrices of Ũ.

9Following Lemma 2.1 in [Goreinov, S. A.; Tyrtyshnikov, E. E.; Zamarashkin, N. L. A
theory of pseudoskeleton approximations. Linear Algebra Appl. 261 (1997), 1–21].
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Maximality of Ũ(I, :) implies max |bij | ≤ 1. Argument: If there was bij

with |bij | > 1 then interchanging rows r + i and j of Ũ would increase
volume of Ũ(I, :).
We have

∥B∥2 ≤ ∥B∥F ≤
√
(n − r)r max |bij | ≤

√
(n − r)r .

This yields the result:

∥U(I, :)−1∥2 = ∥UU(I, :)−1∥2 =
√

1 + ∥B∥2
2 ≤

√
1 + (n − r)r .
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Greedy row selection from orthonormal basis

Finding submatrix of maximal volume is NP hard.10

Greedy algorithm (column-by-column):11

▶ First step is easy: Choose i such that |ui1| is maximal.
▶ Now, assume that k < r steps have been performed and the first

k columns have been processed. Task: Choose optimal index in
column k + 1.

There is a one-to-one connection between greedy row selection and
Gaussian elimination with column pivoting!

10Civril, A., Magdon-Ismail, M.: On selecting a maximum volume sub-matrix of a
matrix and related problems. Theoret. Comput. Sci. 410(47-49), 4801–4811 (2009)

11Reinvented multiple times in the literature.
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Greedy row selection from orthonormal basis
Simplified form of Gaussian elimination with column pivoting:
Input: n × r matrix U
Output: “Good” index set I ⊂ {1, . . . ,n}, #I = r .

Set I = ∅.
for k = 1, . . . , r do

Choose i∗ = argmaxi=1,...,n|uik |.
Set I ← I ∪ i∗.
U ← U − 1

ui∗,k
U(:, k)U(i∗, :)

end for

Theorem
For the index set returned by greedy algorithm applied to orthnormal
U ∈ Rn×r , it holds that

∥U(I, :)−1∥2 ≤
√

nr2r−1.

Performance of greedy algorithm in practice often quite good,
although this bound is sharp.
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Counter example for greedy
Let U be Q-factor of economy sized QR factorization of n × r matrix

A =


1
−1 1
...

. . .
. . .

−1 · · · −1 1
−1 · · · −1 −1
...

...
...

−1 · · · −1 −1


Variation of famous example by Wilkinson. Greedy performs no
pivoting, at least in exact arithmetic.

0 10 20 30
10

0

10
5

10
10

∥U(I, :)−1∥2 vs. r for n = 100 returned by greedy.
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Improvements over greedy
Improve upon maxvol-based greedy (in a deterministic framework)
via Knuth’s iterative exchange of rows. Given index set I, #I = r , and
µ ≥ 1, µ ≈ 1, form

Ũ = UU(I, :)−1.

Search for largest element

(i∗, j∗) = argmax|ũij |.

If
|ũi∗ j∗ | ≤ µ, (1)

terminate algorithm. Otherwise, set I ← I\{j∗} ∪ {i∗} and repeat.

Alternative: Apply existing methods for rank-revealing QR to UT

[Golub/Van Loan’2013].
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Vector approximation
Goal: Want to approximate vector f in subspace range(U). For
I = {i1, . . . , ik} define selection operator:

SI =
[
ei1 ei2 · · · eik

]
.

Minimal error attained by orthogonal projection UUT . When replaced
by oblique projection

U(ST
I U)−1ST

I f

increase of error bounded by result of lemma.

Lemma

∥f − U(ST
I U)−1ST

I f∥2 ≤ ∥(ST
I U)−1∥2 · ∥f − UUT f∥2.

Proof. Let Π = U(ST
I U)−1ST

I . Then

∥(I − Π)f∥2 = ∥(I − Π)(f − UUT f )∥2 ≤ ∥I − Π∥2∥f − UUT f∥2.

The proof is completed by noting (and using the exercises),

∥I − Π∥2 = ∥Π∥2 ≤ ∥(ST
I U)−1ST

I ∥2 = ∥(ST
I U)−1∥2.
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Connection to interpolation
We have

ST
I (I − U(ST

I U)−1ST
I ) = 0

and hence
∥ST

I (f − U(ST
I U)−1ST

I f )∥2 = 0.

Interpretation: f is “interpolated” exactly at selected indices.
Example: Let f contain discretization of exp(x) on [−1,1] let U
contain orthonormal basis of discretized monomials {1, x , x2, . . .}.

0 50 100 150 200

-0.2

-0.1
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0.1

0.2
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Connection to interpolation

Iteration 1, Err ≈ 14.8 Iteration 2, Err ≈ 5.7
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Iteration 3, Err ≈ 0.7 Iteration 4, Err ≈ 0.14
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Connection to interpolation
Comparison between best approximation, greedy approximation,
approximation obtained by simply selecting first r indices.

0 2 4 6 8 10
10

-10

10
-5

10
0

Terminology:
▶ Continuous setting: EIM (Empirical Interpolation method),

[M. Barrault, Y. Maday, N. C. Nguyen, and A. T. Patera, An “empirical interpolation” method:

Application to efficient reduced-basis discretization of partial differential equations, C. R.

Math. Acad. Sci. Paris, 339 (2004), pp. 667–672].

▶ Discrete setting: DEIM (Discrete EIM),
[S. Chaturantabut and D. C. Sorensen. Nonlinear model reduction via discrete empirical

interpolation. SIAM Journal on Scientific Computing, 32(5), 2737–2764, 2010].
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POD+DEIM
Consider LARGE ODE of the form

ẋ(t) = Ax(t) + F (x(t)).

A is n × n matrix. Idea of POD12:
1. Simulate ODE for one or more initial conditions and collect

trajectories at discrete time points into snapshot matrix:

X =
(
x(t1) · · · x(tm)

)
.

2. Compute ONB V ∈ Rn×r , r ≪ n, of dominant left subspace of X
(e.g., by SVD).

3. Assume approximation x ≈ UUT x = Uy and project dynamical
system onto range(U):

ẏ(t) = UT AUy(t) + UT F (Uy(t)).

12See [S. Volkwein. Proper Orthogonal Decomposition: Theory and Reduced-Order
Modelling. Lecture Notes, 2013] for a comprehensive introduction.



42/130

POD+DEIM
Problem: UT F (Uy(t)) still involves (large) dimension of original
system.
Using DEIM:

UT F (Uy(t)) ≈ (ST
I U)−1ST

I F (Uy(t)).

ẏ(t) = UT AUy(t) + (ST
I U)−1ST

I F (Uy(t)).

; Only need to evaluate #I = r instead of n entries of function F .
Particularly efficient for

F (x) =

f1(x1)
...

fn(xn)

 ⇒ ST
I F (Uy(t)) =

fi1(xi1)
...

fir (xir )


Example from [Chaturantabut/Sorensen’2010]: Discretized
FitzHugh-Nagumo equations involve F (x) = x ⊙ (x − 0.1)⊙ (1− x).
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The CUR decomposition: Existence results

A = CUR,

where C contains columns of A, R contains rows of A, U is chosen
“wisely”.
Theorem (Goreinov/Tyrtyshnikov/Zamarshkin’1997). Let
ε := σk+1(A). Then there exist row indices I ⊂ {1, . . . ,m} and
column indices J ⊂ {1, . . . ,n} and a matrix S ∈ Rk×k such that

∥A− A(:, J)SA(I, :)∥2 ≤ ε(1 + 2
√

k(
√

m +
√

n)).

Proof. Let Uk ,Vk contain k dominant left/right singular vectors of A.
Choose I, J by selecting rows from Uk ,Vk . According to max volume
lemma, the square matrices Û = Uk (I, :), V̂ = Vk (J, :) satisfy

∥Û−1∥2 ≤
√

k(m − k) + 1, ∥V̂−1∥2 ≤
√

k(n − k) + 1.

+ complicated choice of S.



44/130

The CUR decomposition: Existence results

Choice of S = (A(I, J))−1 in CUR ; Remainder term

R := A− A(:, J)(A(I, J))−1A(I, :)

has zero rows at I and zero columns at J.

Cross approximation:
1 3 6

2

4

7

1 3 6
2
4
7

≈
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Adaptive Cross Approximation (ACA)

A more direct attempt to find a good cross..
Theorem (Goreinov/Tyrtyshnikov’2001). Suppose that

A =

[
A11 A12
A21 A22

]
where A11 ∈ Rr×r has maximal volume among all r × r submatrices
of A. Then

∥A22 − A21A−1
11 A12∥C ≤ (r + 1)σr+1(A),

where ∥M∥C := maxij |mij |

As we already know, finding A11 is NP hard
[Çivril/Magdon-Ismail’2013].
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Adaptive Cross Approximation (ACA)

ACA with full pivoting [Bebendorf/Tyrtyshnikov’2000]

1: Set R0 := A, I := {}, J := {}, k := 0
2: repeat
3: k := k + 1
4: (ik , jk ) := argmaxi,j |Rk−1(i , j)|
5: I ← I ∪ {ik}, J ← J ∪ {jk}
6: δk := Rk−1(ik , jk )
7: uk := Rk−1(:, jk ), vk := Rk−1(ik , :)T/δk
8: Rk := Rk−1 − uk vT

k
9: until ∥Rk∥F ≤ ε∥A∥F

▶ This is greedy for maxvol.
▶ Still too expensive for general matrices.
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Adaptive Cross Approximation (ACA)

ACA with partial pivoting
1: Set R0 := A, I := {}, J := {}, k := 1, i∗ := 1
2: repeat
3: j∗ := argmaxj |Rk−1(i∗, j)|
4: δk := Rk−1(i∗, j∗)
5: if δk = 0 then
6: if #I = min{m,n} − 1 then
7: Stop
8: end if
9: else

10: uk := Rk−1(:, j∗), vk := Rk−1(i∗, :)T/δk
11: Rk := Rk−1 − uk vT

k
12: k := k + 1
13: end if
14: I ← I ∪ {i∗}, J ← J ∪ {j∗}
15: i∗ := argmaxi ̸∈I |uk (i)|
16: until stopping criterion is satisfied
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Adaptive Cross Approximation (ACA)

ACA with partial pivoting. Remarks:
▶ Rk is never formed explicitly. Entries of Rk are computed from

Rk (i , j) = A(i , j)−
k∑

ℓ=1

uℓ(i)vℓ(j).

▶ Ideal stopping criterion ∥uk∥2∥vk∥2 ≤ ε∥A∥F elusive.
Replace ∥A∥F by ∥Ak∥F , recursively computed via

∥Ak∥2
F = ∥Ak−1∥2

F + 2
k−1∑
j=1

uT
k ujvT

j vk + ∥uk∥2
2∥vk∥2

2.
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Adaptive Cross Approximation (ACA)

Two 100× 100 matrices:
(a) The Hilbert matrix A defined by A(i , j) = 1/(i + j − 1).
(b) The matrix A defined by A(i , j) = exp(−γ|i − j |/n) with γ = 0.1.
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1. Excellent convergence for Hilbert matrix.
2. Slow singular value decay impedes partial pivoting.
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ACA for SPSD matrices

For symmetric positive semi-definite matrix A ∈ Rn×n:
▶ SVD becomes spectral decomposition.
▶ Can use trace instead of Frobenius norm to control error.
▶ Remainder Rk stays SPSD.
▶ Rows/columns can be chosen by largest diagonal element of Rk .
▶ ACA becomes

= Cholesky (with diagonal pivoting); see [Higham’1990].
= Nyström method [Williams/Seeger’2001].

▶ DEIM-like error bound [Harbrecht/Peters/Schneider’2012],
[Cortinovis/DK/Massei’2020]:

∥Rk∥C ≤ 4kσk+1(A),

This is the only known situation (of practical relevance), for which a
deterministic method only needs to see O(nk) entries of A and still
satisfies an error bound.
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3. Stochastic sampling
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Randomized column/row sampling
Aim: Obtain rank-r approximation from randomly selected rows and
columns of A.

Popular sampling strategies:
▶ Uniform sampling.
▶ Sampling based on row/column norms.
▶ Sampling based on more complicated quantities (leverage

scores).
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Preliminaries on randomized sampling
Exponential function example from before.
Comparison between best approximation, greedy approximation,
approximation obtained by randomly selecting rows.
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Preliminaries on randomized sampling

A simple way to fool uniformly random row selection:

U =

(
0(n−r)×r

Ir

)
for n very large and r ≪ n.
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Column sampling

Basic algorithm aiming at rank-r approximation:
1. Sample (and possibly rescale) k > r columns of A

; m × k matrix C.
2. Compute SVD C = UΣV T and set Q = Ur ∈ Rm×r .
3. Return low-rank approximation QQT A.

▶ Can be combined with streaming algorithm [Liberty’2007] to limit
memory/cost of working with C.

▶ Quality of approximation crucially depends on sampling strategy.
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Column sampling

Lemma
For any matrix C ∈ Rm×r , let Q be the matrix computed above. Then

∥A−QQT A∥2
2 ≤ σr+1(A)2 + 2∥AAT − CCT∥2.

Proof. We have

(A−QQT A)(A−QQT A)T

= (I −QQT )CCT (I −QQT ) + (I −QQT )(AAT − CCT )(I −QQT )

Hence,

∥A−QQT A∥2
2 = λmax

(
(A−QQT A)(A−QQT A)T )

≤ λmax

(
(I −QQT )CCT (I −QQT )

)
+ ∥AAT − CCT∥2

= σr+1(C)2 + ∥AAT − CCT∥2.

The proof is completed by applying Weyl’s inequality:

σr+1(C)2 = λr+1(CCT ) ≤ λr+1(AAT ) + ∥AAT − CCT∥2.
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Random column sampling
Using the lemma, the goal now becomes to approximate the matrix
product AAT using column samples of A.
Notation:

A =
[
a1 · · · an

]
, C =

[
c1 · · · ck

]
General sampling method:
Input: A ∈ Rm×n, probabilities p1, . . . ,pn ̸= 0, integer k .
Output: C ∈ Rm×k containing selected columns of A.

1: for t = 1, . . . , k do
2: Pick jt ∈ {1, . . . ,n} with P[jt = ℓ] = pℓ, ℓ = 1, . . . ,n,

independently and with replacement.
3: Set ct = ajt/

√
kpjt .

4: end for
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Random column sampling
One has

E[∥AAT − CCT∥2
F ] =

∑
ij

E[(AAT − CCT )2
ij ]

=
∑

ij

Var[(CCT )ij ]

=
1
k

∑
ij

( n∑
ℓ=1

a2
iℓa

2
jℓ

pℓ
− 1

k
(AAT )2

ij

)

=
1
k

[
n∑

ℓ=1

1
pℓ
∥aℓ∥4

2 − ∥AAT∥2
F

]
.

Lemma
The choice pℓ = ∥aℓ∥2

2/∥A∥2
F minimizes E[∥AAT − CCT∥2

F ] and yields

E[∥AAT − CCT∥2
F ] =

1
k
[
∥A∥4

F − ∥AAT∥2
F
]

Proof. Established by showing that this choice of pℓ satisfies
first-order conditions of constrained optimization problem.
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Random column sampling
Norm based sampling:
Input: A ∈ Rm×n, integer k .
Output: C ∈ Rm×k containing selected columns of A.

1: Set pℓ = ∥aℓ∥2
2/∥A∥2

F for ℓ = 1, . . . ,n.
2: for t = 1, . . . , k do
3: Pick jt ∈ {1, . . . ,n} with P[jt = ℓ] = pℓ, ℓ = 1, . . . ,n,

independently and with replacement.
4: Set ct = ajt/

√
kpjt .

5: end for
5: Compute SVD C = UΣV T and set Q = Ur ∈ Rm×r .
5: Return low-rank approximation QQT A.
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Random column sampling
By Azuma-Hoeffding inequality:

Theorem (Drineas/Kannan/Mahoney’2006)
For the matrix Q returned by the algorithm above it holds that

E
[
∥A−QQT A∥2

2
]
≤ σ2

r+1(A) + ε∥A∥2
F for k ≥ 4/ε2.

With probability at least 1− δ,

∥A−QQT A∥2
2 ≤ σ2

r+1(A) + ε∥A∥2
F for k ≥ 4(1 +

√
8 · log(1/δ))2/ε2.

Proof. Follows from combining very first lemma with last two lemmas.
Remarks:
▶ Dependence of k on ε pretty bad. Unlikely to achieve something

significantly better without assuming further properties of A (e.g.,
incoherence of singular vectors) with sampling based on row
norms only.

▶ Simple “counter example”:

A =
(

1√
n e1

1√
n e1 · · · 1√

n e1
1√
n e2

)
∈ Rn×(n+1).
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Random column sampling
[Drineas/Mahoney/Muthukrishnan’2007]: Let Vk contain k dominant
right singular vectors of A. Setting

pℓ = ∥Vk (ℓ, :)∥2
2/k , ℓ = 1, . . . ,n

and sampling O(k2(log 1/δ)/ε2) columns13 yields

∥A−QQT A∥F ≤ (1 + ε)∥A− Tk (A)∥F

with probability 1− δ.
Relative error bound!
CUR decomposition can be obtained by applying ideas to rows and
columns (yielding R and C, respectively) and choosing U
appropriately.
Many improvements: For example, it is enough to have a rough
approximation of ∥Vk (ℓ, :)∥2, which can be refined iteratively
[Luan/Pan’2023].

13There are variants that improve this to O(k log k log(1/δ)/ε2).
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4. Tensors
▶
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First steps with tensors
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Vectors, matrices, and tensors

Vector Matrix Tensor

▶ scalar = tensor of order 0
▶ (column) vector = tensor of order 1
▶ matrix = tensor of order 2
▶ tensor of order 3

= n1n2n3 numbers arranged in n1 × n2 × n3 array
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Tensors of arbitrary order
A d-th order tensor X of size n1 × n2 × · · · × nd is a d-dimensional
array with entries

Xi1,i2,...,id , iµ ∈ {1, . . . ,nµ} for µ = 1, . . . ,d .

In the following, entries of X are usually real (for simplicity) ;

X ∈ Rn1×n2×···×nd .

Multi-index notation:

I = {1, . . . ,n1} × {1, . . . ,n2} × · · · × {1, . . . ,nd}.

Then i ∈ I is a tuple of d indices:

i = (i1, i2, . . . , id ).

Allows to write entries of X as Xi for i ∈ I.
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Two important points
1. A matrix A ∈ Rm×n has a natural interpretation as a linear

operator in terms of matrix-vector multiplications:

A : Rn → Rm, A : x 7→ A · x .

There is no such (unique and natural) interpretation for tensors!
; fundamental difficulty to define meaningful general notion of
eigenvalues and singular values of tensors.

2. Number of entries in tensor grows exponentially with d ;

Curse of dimensionality.
Example: Tensor of order 30 with n1 = n2 = · · · = nd = 10 has
1030 entries = 8× 1012 Exabyte storage!14

For d ≫ 1: Cannot afford to store tensor explicitly (in terms of its
entries).

14Global data storage a few years ago calculated at 295 exabyte, see
http://www.bbc.co.uk/news/technology-12419672.

http://www.bbc.co.uk/news/technology-12419672
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Basic calculus
▶ Addition of two equal-sized tensors X ,Y:

Z = X + Y ⇔ Zi = Xi + Yi ∀i ∈ I.

▶ Scalar multiplication with α ∈ R:

Z = αX ⇔ Zi = αXi ∀i ∈ I.

; vector space structure.

▶ Inner product of two equal-sized tensors X ,Y:

⟨X ,Y⟩ :=
∑
i∈I

xiyi .

; Induced norm
∥X∥ :=

(∑
i∈I

x2
i

)1/2

For a 2nd order tensor (= matrix) this corresponds to the usual
Euclidean geometry and Frobenius norm.
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Vectorization
Tensor X of size n1 × n2 × · · · × nd has n1 · n2 · · · nd entries
; many ways to stack entries in a (loooong) column vector.
One possible choice:
The vectorization of X is denoted by vec(X ), where

vec : Rn1×n2×···×nd → Rn1·n2···nd

stacks the entries of a tensor in reverse lexicographical order into a
long column vector.

Example: d = 3, n1 = 3, n2 = 2, n3 = 3.

vec(X ) =



x111
x211
x311
x121
...
...

x123
x223
x323


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Matricization
▶ A matrix has two modes (column mode and row mode).
▶ A d th-order tensor X has d modes (µ = 1, µ = 2, . . ., µ = d).

Let us fix all but one mode, e.g., µ = 1: Then

X (:, i2, i3, . . . , id ) (abuse of MATLAB notation)

is a vector of length n1 for each choice of i2, . . . , id . These vectors are
called fibers.

; View tensor X as a bunch of column vectors:
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Matricization
Stack vectors into an n1 × (n2 · · · nd ) matrix:

X ∈ Rn1×n2×···×nd X (1) ∈ Rn1×(n2n3···nd )

For µ = 1, . . . ,d , the µ-mode matricization of X is a matrix

X (µ) ∈ Rnµ×(n1···nµ−1nµ+1···nd )

with entries (
X (µ)

)
iµ1 ,(i1,...,iµ−1,iµ+1...id )

= Xi ∀i ∈ I.
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Matricization
In MATLAB: a = rand(2,3,4,5);

▶ 1-mode matricization:
reshape(a,2,3*4*5)

▶ 2-mode matricization:
b = permute(a,[2 1 3 4]);
reshape(b,3,2*4*5)

▶ 3-mode matricization:
b = permute(a,[3 1 2 4]);
reshape(b,4,2*3*5)

▶ 4-mode matricization:
b = permute(a,[4 1 2 3]);
reshape(b,5,2*3*4)

For a matrix A ∈ Rn1×n2 :

A(1) = A, A(2) = AT .
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µ-mode matrix products
Consider 1-mode matricization X (1) ∈ Rn1×(n2···nd ):

Seems to make sense to multiply an m × n1 matrix A from the left:

Y (1) := A X (1) ∈ Rm×(n2···nd ).

Can rearrange Y (1) back into an m × n2 × · · · × nd tensor Y.
This is called 1-mode matrix multiplication

Y = A ◦1 X ⇔ Y (1) = AX (1)

More formally (and more ugly):

Yi1,i2,...,id =

n1∑
k=1

ai1,kXk,i2,...,id .
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µ-mode matrix products
General definition of a µ-mode matrix product with A ∈ Rm×n1 :

Y = A ◦µ X ⇔ Y (µ) = AX (µ).

More formally (and more ugly):

Yi1,i2,...,id =

n1∑
k=1

aiµ,kXi1,...,iµ−1,k,iµ+1,...,id .

For matrices:
▶ 1-mode multiplication = multiplication from the left:

Y = A ◦1 X = A X .

▶ 2-mode multiplication = transposed multiplication from the right:

Y = A ◦2 X = X AT .
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µ-mode matrix products and vectorization
By definition,

vec(X ) = vec
(
X (1)).

Consequently, also

vec(A ◦1 X ) = vec
(
A X (1)).

; Vectorized version of 1-mode matrix product:

vec(A ◦1 X ) = (In2···nd ⊗ A)vec(X )
= (Ind ⊗ · · · ⊗ In2 ⊗ A) vec(X ).

Relation between µ-mode matrix product and matrix-vector product:

vec(A ◦µ X ) = (Ind ⊗ · · · ⊗ Inµ+1 ⊗ A⊗ Inµ−1 ⊗ · · · ⊗ In1) vec(X )
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Summary
▶ Tensor X ∈ Rn1×···×nd is a d-dimensional array.
▶ Various ways of reshaping entries of a tensor X into a vector or

matrix.
▶ µ-mode matrix multiplication can be expressed with Kronecker

products
Further reading:
▶ T. Kolda and B. W. Bader. Tensor decompositions and

applications. SIAM Rev. 51 (2009), no. 3, 455–500.
Software:
▶ MATLAB (and all programming languages) offer basic

functionality to work with d-dimensional arrays.
▶ MATLAB Tensor Toolbox: http://www.tensortoolbox.org/

http://www.tensortoolbox.org/
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Applications of tensors
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Two classes of tensor problems
Class 1: function-related tensors
Consider a function u(ξ1, . . . , ξd ) ∈ R in d variables ξ1, . . . , ξd .
Tensor U ∈ Rn1×···×nd represents discretization of u:
▶ U contains function values of u evaluated on a grid; or
▶ U contains coefficients of truncated expansion in tensorized

basis functions:

u(ξ1, . . . , ξd ) ≈
∑
i∈I

Ui ϕi1(ξ1)ϕi2(ξ2) · · ·ϕid (ξd ).

Typical setting:
▶ U only given implicitly, e.g., as the solution of a discretized PDE;
▶ seek approximations to U with very low storage and tolerable

accuracy.
▶ d may become very large.



78/130

Discretization of function in d variables
ξ1, . . . , ξd ∈ [0,1]
; #function values grows exponentially with d
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Separability helps
Ideal situation:
Function f separable:
f (ξ1, ξ2, . . . , ξd ) = f1(ξ1)f2(ξ2) . . . fd (ξd )

Kronecker product

diskretized f

discretized f j O(nd ) memory ;
O(dn) memory
Of course:
Exact separability rarely satisfied in
practice.
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Two classes of tensor problems
Class 2: data-related tensors
Tensor U ∈ Rn1×···×nd contains multi-dimensional data.

Example 1: U2011,3,2 denotes the number of papers published 2011
by author 3 in the mathematical journal 2.

Example 2: A video of 1000 frames with resolution 640× 480 can
be viewed as a 640× 480× 1000 tensor.

Example 3: Hyperspectral images.

Example 4: Deep learning: Coefficients in each layer of deep NN
stored as tensors (TensorFlow), Interpretation of RNNs as
hierarchical tensor decomposition.

Typical setting (except for Example 4):
▶ entries of U often given explicitly (at least partially).
▶ extraction of dominant features from U .
▶ usually moderate values for d .
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Low-rank tensor techniques

▶ Emerged during last 15 years in scientific computing.
▶ Successfully applied to:

▶ quantum many body problems;
▶ parameter-dependent / multi-dimensional integrals;
▶ electronic structure calculations: Hartree-Fock / DFT;
▶ stochastic and parametric PDEs;
▶ high-dimensional Boltzmann / chemical master / Fokker-Planck /

Schrödinger equations;
▶ micromagnetism;
▶ rational approximation problems;
▶ computational homogenization;
▶ computational finance;
▶ multivariate regression and machine learning;
▶ . . .
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The CP decomposition
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CP decomposition
▶ Aim: Generalize concept of low rank from matrices to tensors.
▶ One possibility motivated by

X =
[
a1, a2, . . . , aR

][
b1, b2, . . . , bR

]T
=

= a1bT
1 + a2bT

2 + · · ·+ aRbT
R .

; vectorization

vec(X ) = b1 ⊗ a1 + b2 ⊗ a2 + · · ·+ bR ⊗ aR .

Canonical Polyadic decomposition of tensor X ∈ Rn1×n2×n3 defined
via

vec(X ) = c1 ⊗ b1 ⊗ a1 + c2 ⊗ b2 ⊗ a2 + · · ·+ cR ⊗ bR ⊗ aR

X = a1 ◦ b1 ◦ c1 + a2 ◦ b2 ◦ c2 + · · ·+ aR ◦ bR ◦ cR

for vectors aj ∈ Rn1 , bj ∈ Rn2 , cj ∈ Rn3 .

CP directly corresponds to semi-separable approximation.
Tensor rank of X = minimal possible R
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CP decomposition
Illustration of CP decomposition

X = a1 ◦ b1 ◦ c1 + a2 ◦ b2 ◦ c2 + · · ·+ aR ◦ bR ◦ cR .

c1

a1

b1

cr

ar

br

X

More compact notation:

vec(X ) = JA,B,CK,

with

A = [a1, . . . ,aR] ∈ Rn1×R

B = [b1, . . . ,bR] ∈ Rn2×R

C = [c1, . . . , cR] ∈ Rn3×R
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Dismissal of CP decomposition
Despite its simplicity, the CP decomposition comes with a lot of
problems [Silva/Lim’2008], [Kolda/Bader’2009]:
▶ Tensor rank can be extremely difficult to determine.

▶ Tensor rank is not lower semi-continuous.
▶ Real ̸= complex tensor rank.
▶ No simple quasi-optimal approximation algorithm known.
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The Tucker decomposition
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Tucker decomposition
▶ Alternative rank concept for tensors motivated by

A = U · Σ · V T , U ∈ Rn1×r , V ∈ Rn2×r , Σ ∈ Rr×r .

; vectorization

vec(X ) =
(
V ⊗ U

)
· vec(Σ).

Ignore diagonal structure of Σ and call it C.

Tucker decomposition of tensor X ∈ Rn1×n2×n3 defined via

vec(X ) =
(
W ⊗ V ⊗ U

)
· vec(C)

with U ∈ Rn1×r1 , V ∈ Rn2×r2 , W ∈ Rn3×r3 ,
and core tensor C ∈ Rr1×r2×r3 .

In terms of µ-mode matrix products:

X = U ◦1 V ◦2 W ◦3 C =: (U,V ,W ) ◦ C.
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Tucker decomposition
Illustration of Tucker decomposition

X = (U,V ,W ) ◦ C

X CU

V

W
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Tucker decomposition
Consider all three matricizations:

X (1) = U · C(1) ·
(
W ⊗ V

)T
,

X (2) = V · C(2) ·
(
W ⊗ U

)T
,

X (3) = W · C(3) ·
(
V ⊗ U

)T
.

These are low rank decompositions ;

rank
(
X (1)) ≤ r1, rank

(
X (2)) ≤ r2, rank

(
X (3)) ≤ r3.

Multilinear rank of tensor X ∈ Rn1×n2×n3 defined by tuple

(r1, r2, r3), with ri = rank
(
X (i)).
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Higher-order SVD (HOSVD)
Goal: Approximate given tensor X by Tucker decomposition with
prescribed multilinear rank (r1, r2, r3).

1. Calculate SVD of matricizations:

X (µ) = ŨµΣ̃µṼ T
µ for µ = 1,2,3.

2. Truncate basis matrices:

Uµ := Ũµ(:,1 : rµ) for µ = 1,2,3.

3. Form core tensor:

C := UT
1 ◦1 UT

2 ◦2 UT
3 ◦3 X .

Truncated tensor produced by HOSVD [Lathauwer/De
Moor/Vandewalle’2000]:

X̃ := U1 ◦1 U2 ◦2 U3 ◦3 C.

Remark:
Orthogonal projection X̃ :=

(
π1 ◦ π2 ◦ π3

)
X with πµX := UµUT

µ ◦µ X .
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Higher-order SVD (HOSVD)
Theorem. Tensor X̃ resulting from HOSVD satisfies quasi-optimality
condition

∥X − X̃∥ ≤
√

d∥X − Xbest∥,

where Xbest is best approximation of X with multilinear ranks
(r1, . . . , rd ).

Proof:

∥X − X̃∥2 = ∥X − (π1 ◦ π2 ◦ π3)X∥2

= ∥X − π1X∥2 + ∥π1X − (π1 ◦ π2)X∥2 + · · ·
· · ·+ ∥(π1 ◦ π2)X − (π1 ◦ π2 ◦ π3)X∥2

≤ ∥X − π1X∥2 + ∥X − π2X∥2 + ∥X − π3X∥2

Using
∥X − πµX∥ ≤ ∥X − Xbest∥ for µ = 1,2,3

leads to
∥X − X̃∥2 ≤ 3 · ∥X − Xbest∥2.
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Approximation error obtained from HOSVD
Another direct consequence of the proof:

Corollary. Let σ(µ)
k denote the k th singular of X (µ). Then the

approximation X̃ obtained from the HOSVD satisfies

∥X − X̃∥2 ≤
3∑

µ=1

nµ∑
k=rµ+1

(σ
(µ)
k )2.

This also implies a lower bound for ∥X − Xbest∥ in terms of the
singular values of the matricizations of X .
▶ SVD can be replaced by any low-rank approximation technique

discussed in this course. By triangular inequality, bound of
Corollary still holds with an extra term accounting for the inexact
SVD.

▶ Approximation error can be improved by alternativing
optimization (HOOI), but often not worth bothering.
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Tucker decomposition – Summary
For general tensors:
▶ multilinear rank r is upper semi-continuous ; closedness

property.
▶ HOSVD – simple and robust algorithm to obtain quasi-optimal

low-rank approximation.
▶ quasi-optimality good enough for most applications in scientific

computing.
▶ robust black-box algorithms/software available (e.g., Tensor

Toolbox).

Drawback:
Storage of core tensor ∼ rd

; curse of dimensionality
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The Tensor Train
decomposition



96/130

Tensor network diagrams

▶ Introduced by Roger Penrose.
▶ Heavily used in quantum mechanics (spin networks).
▶ Useful to gain intuition and guide design of algorithms.
▶ This is the matrix product C = AB:

Cij =
r∑

k=1

Aik Bkj
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Tensor of order 3 in Tucker decomposition

Xijk =

r1∑
ℓ1=1

r2∑
ℓ2=1

r3∑
ℓ3=1

Cℓ1ℓ2ℓ3Uiℓ1Vjℓ2Wkℓ3

▶ r1 × r2 × r3 core tensor C
▶ n1 × r1 matrix U spans first mode
▶ n2 × r2 matrix V spans second mode
▶ n3 × r3 matrix W spans third mode.
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Tensor of order 6 in TT decomposition

▶ X implicitly represented by four r × n × r tensors and two n × r
matrices

▶ More detailed picture:

X≤3 X≥5n1

U1

n2

U2

n3

U3

n4

U4

n5

U5

n6

U6
r1 r2 r3 r4 r5
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Tensor Train (TT) decomposition

A tensor X is in TT decomposition if it can be written as

X (i1, . . . , id ) =
r1∑

k1=1

· · ·
rd−1∑

kd−1=1

U1(1, i1, k1)U2(k1, i2, k2) · · · Ud (kd−1, id ,1).

▶ Smallest possible tuple (r1, . . . , rd−1) is called TT rank of X .
▶ Uµ ∈ Rrµ−1×nµ×rµ (formally set r0 = rd = 1) are called TT cores

for µ = 1, . . . ,d .
▶ If TT ranks are not large ; high compression ratio as d grows.
▶ TT decomposition multilinear wrt cores.
▶ TT decomposition connects to

▶ matrix products ; Matrix Product States (MPS) in physics (see
[Grasedyck/DK/Tobler’2013] for references)

▶ simultaneous matrix factorizations ; SVD-based compression
▶ contractions and tensor network diagrams ; design of efficient

contraction-based algorithms
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Inner product of two tensors in TT decomposition

▶ Carrying out contractions requires O(dnr4) instead of O(nd )
operations for tensors of order d .
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TT decomposition and matrix products

X (i1, . . . , id ) =
r1∑

k1=1

· · ·
rd−1∑

kd−1=1

U1(1, i1, k1)U2(k1, i2, k2) · · · Ud (kd−1, id ,1).

Let Uµ(iµ) be iµth slice of µth core: Uµ(iµ) := Uµ(:, iµ, :) ∈ Rrµ−1×rµ .
Then

X (i1, i2, . . . , id ) = U1(i1)U2(i2) · · ·Ud (id ).

Remark: Error analysis of matrix multiplication [Higham’2002] shows
that TT decomposition may suffer from numerical instabilities if

∥U1(i1)∥2∥U2(i2)∥2 · · · ∥Ud (id )∥2 ≫ |X (i1, i2, . . . , id )|.

See [Bachmayr/Kazeev: arXiv:1802.09062] for more details.
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TT decomposition and matrix factorizations

X (i1, . . . , id ) =
∑

k1,k2,...,kd−1

U1(1, i1, k1)U2(k1, i2, k2) · · · Ud (kd−1, id ,1).

For any 1 ≤ µ ≤ d − 1 group first µ factors and last d − µ factors
together:

X (i1, . . . , iµ, iµ+1, . . . id )

=

rµ∑
kµ=1

( ∑
k1,...,kµ−1

U1(1, i1, k1) · · · Uµ(kµ−1, iµ, kµ)
)

·
( ∑

kµ+1,...,kd−1

Uµ+1(kµ, iµ+1, kµ+1) · · · Ud (kd−1, id ,1)
)

This can be interpreted as a matrix-matrix product of two (large)
matrices!
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TT decomposition and matrix factorizations

The µth unfolding of X ∈ Rn1×n2×···×nd is obtained by arranging the
entries in a matrix

X<µ> ∈ R(n1n2···nµ)×(nµ+1···nd )

where the corresponding index map is given by

ι : Rn1×···×nd → Rn1···nµ × Rnµ+1···nd , ι(i1, . . . , id ) = (irow, icol),

irow = 1 +

µ∑
ν=1

(iν − 1)
ν−1∏
τ=1

nτ , icol = 1 +
d∑

ν=µ+1

(iν − 1)
ν−1∏

τ=µ+1

nτ .
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TT decomposition and matrix factorizations
Define interface matrices

X≤µ ∈ Rn1n2···nµ×rµ , X≥µ+1 ∈ Rrµ×nµ+1nµ+2···nd

as

X≤µ(irow, j) =
∑

k1,...,kµ−1

U1(1, i1, k1) · · · Uµ−1(kµ−2, iµ−1, kµ−1)Uµ(kµ−1, iµ, j)

X≥µ+1(j, icol) =
∑

kµ+1,...,kd−1

Uµ+1(j, iµ+1, kµ+1)Uµ+2(kµ+1, iµ+2, kµ+2) · · · Ud(kd−1, id , 1)

Matrix factorizations

X<µ> = X≤µX≥µ+1, µ = 1, . . . ,d − 1.

Lemma
The TT rank of a tensor is given by(

rank X<1>, . . . , rank X<d−1>)
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Truncation in TT format
Lemma follows from TT-SVD [Oseledets’2011]) for approximating a
given tensor X in TT format:
Input: X ∈ Rn1×···×nd , target TT rank (r1, . . . , rd−1).
Output: TT cores Uµ ∈ Rrµ−1×nµ×rµ that define a TT decomposition

approximating X .
1: Set r0 = rd = 1. (and formally add leading singleton dimension to
X ∈ R1×n1×···×nd ).

2: for µ = 1, . . . ,d − 1 do
3: Reshape X into X<2> ∈ Rrµ−1nµ×nµ+1···nd .
4: Compute rank-rµ approximation X<2> ≈ UΣV T (e.g., via SVD)
5: Reshape U into Uµ ∈ Rrµ−1×nµ×rµ .
6: Update X via X<2> ← UT X<2> = ΣV T .
7: end for
8: Set Ud = X .
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Truncation in TT format

Theorem
Let XSVD denote the tensor in TT decomposition obtained from
TT-SVD. Then

∥X − XSVD∥ ≤
√
ε2

1 + · · ·+ ε2
d ,

where

ε2
µ = ∥X<µ> − Trµ(X

<µ>)∥2
F = σrµ+1(X<µ>)2 + · · · .

Corollary
Let Xbest denote the best approximation of X with TT rank
(r1, . . . , rd−1). Then

∥X − XSVD∥ ≤
√

d − 1∥X − Xbest∥.
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TT decomposition – Summary of operations
Easy:
▶ (partial) contractions
▶ multiplication with operators in suitable format (MPO)
▶ compression/recompression

Medium:
▶ entrywise products

Hard:
▶ almost everything else

Software:
▶ TT toolbox (Matlab, Python), . . .

Ongoing research:
Effective randomized techniques [Ma/Solomonik’2022, Al Daas et
al.’2023, DK/Vandereacken/Vorhaar’2023, . . .].
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5. Alternating Optimization
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Alternating least-squares / linear scheme

General setting: Solve optimization problem

min
X

f (X ),

where X is a (large) matrix or tensor and f is “simple” (e.g., convex).
Constrain X toMr , set of rank-r matrices or tensors and aim at
solving

min
X∈Mr

f (X ),

Set
X = i(U1,U2, . . . ,Ud ).

(e.g., X = U1UT
2 ). Low-rank formats are multilinear ; hope that

optimizing for each component is simple:

min
Uµ

f (i(U1,U2, . . . ,Ud )).
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Alternating least-squares / linear scheme
Set f (U1, . . . ,Ud ) := f (i(U1, . . . ,Ud )).
ALS:

1: while not converged do
2: U1 ← argminU1

f (i(U1,U2, . . . ,Ud ))
3: U2 ← argminU1

f (i(U1,U2, . . . ,Ud ))
4: . . .
5: Ud ← argminU1

f (i(U1,U2, . . . ,Ud ))
6: end while

Examples:
▶ ALS for fitting CP decomposition
▶ Subspace iteration.

Closely related: Block Gauss-Seidel, Block Coordinate Descent.
Difficulties:
▶ Representation (U1,U2, . . . ,Ud ) often non-unique, parameters

may become unbounded.
▶ Mr not closed
▶ Convergence (analysis)
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2D eigenvalue problem

▶ −△u(x) + V (x)u = λu(x) in Ω = [0,1]× [0,1]
with Dirichlet b.c. and Henon-Heiles potential V

▶ Regular discretization
▶ Reshaped ground state into matrix

Ground state Singular values

0 100 200 300
10

−20

10
−15

10
−10

10
−5

10
0

Excellent rank-10 approximation possible



112/130

Rayleigh quotients wrt low-rank matrices
Consider symmetric n2 × n2 matrix A. Then

λmin(A) = min
x ̸=0

⟨x ,Ax⟩
⟨x , x⟩

.

We now...
▶ reshape vector x into n × n matrix X ;
▶ reinterpret Ax as linear operator A : X 7→ A(X ).



113/130

Rayleigh quotients wrt low-rank matrices
Consider symmetric n2 × n2 matrix A. Then

λmin(A) = min
X ̸=0

⟨X ,A(X )⟩
⟨X ,X ⟩

with matrix inner product ⟨·, ·⟩. We now...
▶ restrict X to low-rank matrices.
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Rayleigh quotients wrt low-rank matrices
Consider symmetric n2 × n2 matrix A. Then

λmin(A)≈ min
X=UV T ̸=0

⟨X ,A(X )⟩
⟨X ,X ⟩

.

▶ Approximation error governed by low-rank approximability of X .
▶ Solved by Riemannian optimization techniques or ALS.
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ALS for eigenvalue problem
ALS for solving

λmin(A)≈ min
X=UV T ̸=0

⟨X ,A(X )⟩
⟨X ,X ⟩

.

Initially:
▶ fix target rank r
▶ U ∈ Rm×r ,V n×r randomly, such that V is ONB

λ̃− λ = 6× 103

residual = 3× 103
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ALS for eigenvalue problem
ALS for solving

λmin(A)≈ min
X=UV T ̸=0

⟨X ,A(X )⟩
⟨X ,X ⟩

.

Fix V , optimize for U.

⟨X ,A(X )⟩ = vec(UV T )TA vec(UV T )

= vec(U)T (V ⊗ I)TA(V ⊗ I)vec(U)

; Compute smallest eigenvalue of reduced matrix (rn × rn) matrix

(V ⊗ I)TA(V ⊗ I).

Note: Computation of reduced matrix benefits from Kronecker
structure of A.
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ALS for eigenvalue problem
ALS for solving

λmin(A)≈ min
X=UV T ̸=0

⟨X ,A(X )⟩
⟨X ,X ⟩

.

Fix V , optimize for U.

λ̃− λ = 2× 103

residual = 2× 103
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ALS for eigenvalue problem
ALS for solving

λmin(A)≈ min
X=UV T ̸=0

⟨X ,A(X )⟩
⟨X ,X ⟩

.

Orthonormalize U, fix U, optimize for V .

⟨X ,A(X )⟩ = vec(UV T )TA vec(UV T )

= vec(V T )(I ⊗ U)TA(I ⊗ U)vec(V T )

; Compute smallest eigenvalue of reduced matrix (rn × rn) matrix

(I ⊗ U)TA(I ⊗ U).

Note: Computation of reduced matrix benefits from Kronecker
structure of A.
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ALS for eigenvalue problem
ALS for solving

λmin(A)≈ min
X=UV T ̸=0

⟨X ,A(X )⟩
⟨X ,X ⟩

.

Orthonormalize U, fix U, optimize for V .

λ̃− λ = 1.5× 10−7

residual = 7.7×10−3
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ALS
ALS for solving

λmin(A)≈ min
X=UV T ̸=0

⟨X ,A(X )⟩
⟨X ,X ⟩

.

Orthonormalize V , fix V , optimize for U.

λ̃− λ = 1× 10−12

residual = 6× 10−7
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ALS for eigenvalue problem
ALS for solving

λmin(A)≈ min
X=UV T ̸=0

⟨X ,A(X )⟩
⟨X ,X ⟩

.

Orthonormalize U, fix U, optimize for V .

λ̃− λ = 7.6× 10−13

residual = 7.2×10−8
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Extension of ALS to TT
Recall interface matrices

X≤µ−1 ∈ Rn1n2···nµ×rµ−1 , X≥µ ∈ Rnµ+1nµ+2···nd×rµ−1

yielding factorization

X<µ> = X≤µ−1X T
≥µ, µ = 1, . . . ,d − 1.

Combined with recursion

X T
≥µ+1 = UR

µ (X
T
≥µ ⊗ Inµ),

this yields

X<µ> = X≤µ−1UR
µX T

≥µ+1, µ = 1, . . . ,d − 1.

Hence,
vec(X ) = (X≥µ+1 ⊗ X≤µ−1) vec(Uµ)

This formula allows us to pull out µth core!
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Extension of ALS to TT
A TT decomposition is called µ-orthogonal if

(UL
ν)

T UL
ν = Irν , X T

≤νX≤ν = Irν for ν = 1, . . . , µ− 1.

and

UR
ν (U

R
ν )

T = Irν , X≥νX T
≥ν = Irµ for ν = µ+ 1, . . . ,d .

This implies that X≥µ+1 ⊗ X≤µ−1 has orthonormal columns!
Consider eigenvalue problem

λmin(A) = min
X ̸=0

⟨X ,A(X )⟩
⟨X ,X⟩

Optimizing for µth core ;

min
Uµ ̸=0

⟨X ,A(X )⟩
⟨X ,X⟩

= min
Uµ ̸=0

⟨vecUµ,Aµ vecUµ⟩
⟨vecUµ, vecUµ⟩

with rµ−1nµrµ × rµ−1nµrµ matrix

Aµ = (X≥µ+1 ⊗ X≤µ−1)
TA(X≥µ+1 ⊗ X≤µ−1)
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Extension of ALS to TT
▶ Uµ is obtained as eigenvector belonging to smallest eigenvalue

of Aµ.
▶ Computation of Aµ for large d only feasible if A has low operator

TT ranks (and is in operator TT decomposition).
▶ One microstep of ALS optimizes Uµ and prepares for next core,

by adjusting orthogonalization.
▶ One sweep of ALS consists of processing cores twice: once from

left to right and once from right to left.
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Extension of ALS to TT

Input: X in right-orthogonal TT decomposition.
1: for µ = 1,2, . . . ,d − 1 do
2: Compute Aµ and replace core Uµ by an eigenvector belonging

to smallest eigenvalue of Aµ.
3: Compute QR decomposition UL

µ = QR.
4: Set UL

µ ← Q.
5: Update Uµ+1 ← R ◦1 Uµ+1.
6: end for
7: for µ = d ,d − 1, . . . ,2 do
8: Compute Aµ and replace core Uµ by an eigenvector belonging

to smallest eigenvalue of Aµ.
9: Compute QR decomposition (UR

µ )
T = QR.

10: Set UR
µ ← QT .

11: Update Uµ−1 ← R ◦3 Uµ−1.
12: end for
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Extension of ALS to TT

Remarks:
▶ “Small” matrix Aµ quickly gets large as TT ranks increase ;

Need to use iterative methods (e.g., Lanczos, LOBPCG),
possibly combined with preconditioning [DK/Tobler’2011] for
solving eigenvalue problems.

▶ In ALS TT ranks of X need to be chosen a priori. Adaptive choice
of rank by merging neighbouring cores, optimizing for the merged
core, and split the optimized merged core ; DMRG, modified
ALS. Cheaper: AMEn [White’2005, Dolgov/Savostyanov’2013].

▶ Principles of ALS easily extend to other optimization problems,
e.g., linear systems [Holtz/Rohwedder/Schneider’2012].
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Numerical Experiments - Sine potential, d = 10

ALS
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Size = 12810 ≈ 1021. Maximal TT rank 40. See
[Kressner/Steinlechner/Uschmajew’2014] for details.
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Numerical Experiments - Henon-Heiles potential,
d = 20
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Size = 12820 ≈ 1042. Maximal TT rank 40.
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Numerical Experiments - 1/∥ξ∥2 potential, d = 20
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Size = 12820 ≈ 1042. Maximal TT rank 30.
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Some ongoing work on low-rank approximation

▶ Dynamical low-rank approximation [Koch/Lubich’2007] with
applications, e.g., to deep learning [Schotthöfer et al.’2022] and
plasma physics [Einkemmer/Lubich’2018].

▶ Low-rank approximation ; entry-wise constraints and operations
[Sarlos et al.’2023].

▶ Continuous limits and operator learning [Boullé/Townsend’2023].
▶ Representation/computation of high-dimensional pdfs through

tensors [Dolgov et al. 2020–]
▶ Randomized techniuqes (stay tuned until Friday)


