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Data drives all we do.

This is how Cambridge
Analytica’s Facebook
targeting model really
worked — according to
the person who built it

The method was similar to the one Netflix uses to

recommend movies — no crystal ball, but good enough to

make an effective political tool.

By MATTHEW HINDMAN

his [Aleksandr Kogan’s]
message went on to confirm
that his approach was indeed
similar to SVD or other matrix
factorization methods, like in
the Netflix Prize competi-
tion, and the Kosinki-Stillwell-
Graepel Facebook model.
Dimensionality reduction of
Facebook data was the core
of his model.


http://www.niemanlab.org

Leaked Internal Google Document, May 2023

But the uncomfortable truth

=t @ @D is, we aren’t positioned to
win this arms race and nei-
What does a leaked Google memo ther is OpenAl. While we've
reveal about the future of AI? been squabbling, a third fac-
R comtol terecntany o aTenter tion has been quietly eat-

ing our lunch... Open-source
models are faster, more cus-
tomizable, more private, and
pound-for-pound more capa-
ble. They are doing things
with $100 and 13B params
that we struggle with at $10M
PO and 540B. And they are do-
ing so in weeks, not months.

In both cases, low-cost public involvement was enabled by a vastly
cheaper mechanism for fine tuning called low rank adaptation, or
LoRA [arXiv:2106.09685] ...
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1. Foundations

» Matrix rank

» SVD

> Best low-rank approximation

» Low-rank and subspace approximation

» When (not) to expect good low-rank approximations
> Stability considerations

References: [Golub/Van Loan’2013]', [Horn/Johnson’2013]?

'G. H. Golub and C. F. Van Loan. Matrix computations. Johns Hopkins University
Press, Baltimore, MD, 2013.

2R. A. Horn and C. R. Johnson. Matrix analysis. Cambridge University Press,
Cambridge, 2013.



Rank and basic properties
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Rank and basic properties
Let A€ R™<". Then

rank(A) := dim(range(A)).

Quiz
1. What is the rank of this matrix?



Rank and basic properties
Let A€ R™<". Then

rank(A) := dim(range(A)).

Quiz
1. What is the rank of this matrix?

2. What is the rank of randn (40) ?




Rank and matrix factorizations

Lemma. A matrix A € R™<" of rank r admits a factorization of the
form
A=BC', BeR™' CeR™.

We say that A has low rank if rank(A) < m, n.
lllustration of low-rank factorization:

. |
BCT

#entries \ mn \ mr + nr
» Generically (and in most applications), A has full rank, that is,
rank(A) = min{m, n}.
» Aim instead at approximating A by a low-rank matrix.




The singular value decomposition

Theorem (SVD). Let A € R™*"™ with m > n. Then there are
orthogonal matrices U € R™ ™ and V € R"*" such that

o1
A=UzVT with ¥= - e R™N
On
0
andoy > 00> --- >0, > 0.

» o4,...,0p are called singular values
> uy,..., U, are called left singular vectors
> vy,...,V, are called right singular vectors
> Av; = ojuj, ATU/:O'/V/fOFi: 1,...,[7.
» Singular values are always uniquely defined by A.
» Singular values are never unique. If 1 > 02 > --- o, > 0 then

unique up to u; « tu;, v < tVv;.



The singular value decomposition

Quiz: Which properties of A can be extracted from the SVD?
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The singular value decomposition

Quiz: Which properties of A can be extracted from the SVD?

r = rank(A) = number of nonzero singular values of A,
kernel(A) = span{ V41, ..., Va}, range(A) = span{uy, ..., U}
A2 = o1, ATz = 1/or, |AllE = 0% + - +0F

o2,...,02 eigenvalues of AAT and AT A.

9/130



SVD: Computational aspects

» Standard implementations (LAPACK, Matlab’s svd, ...) require
O(mn?) operations to compute (economy size) SVD of m x n
matrix A.

» Beware of roundoff error when interpreting singular value plots.
Example: semilogy (svd (hilb (100)))

10—10

107200 20 40 60 80 100
» Kink is caused by roundoff error and does not reflect true behavior
of singular values.
> Exact singular values are known to decay exponentially.®
> Sometimes more accuracy possible.*.
3Beckermann, B. The condition number of real Vandermonde, Krylov and positive
definite Hankel matrices. Numer. Math. 85 (2000), no. 4, 553-577.

4Drmag, Z.; Veselié, K. New fast and accurate Jacobi SVD algorithm. I. SIAM J.
Matrix Anal. Appl. 29 (2007), no. 4, 1322—1342




Best low-rank approximation

For k < n, partition SVD as

a1
Zk 0 T
USVT = U ] [0 *] Ve 7, Te—
Tk
Rank-k truncation:
A~ Ti(A) = Uz VY.
has rank at most k. By unitary invariance of || - || € {|| - ||z, - [|F}:
| Tx(A) — Al = ||diag(0, ..., 0, 0k41, - -, on)||-
In particular:
A= Tk(All2 = ok1, A= Tk(A)llF = /02,4 + -+ 02

Nearly equal iff singular values decay quickly.



Best low-rank approximation
Theorem (Schmidt-Mirsky). Let A € R™*". Then

|A—Tk(A)|| = min {|A— B]|| : B € R™*" has rank at most k }

holds for any unitarily invariant norm || - ||.

Proof: See Section 7.4.9 in [Horn/Johnson'2013] for general case.

Proof for || - ||r: Let o(A), o(B) denote the vectors of singular values of
A and B and use the matrix inner product (A, B) = trace(BT A). Then
von Neumann’s trace inequality states that

(A, B)| < ((A),a(B))
Hence,
|A- Bl = (A-B,A-B)=|Al?-2(A B)+|B|%
lo(A)[15 — 2(c(A),a(B)) + llo(B)3

Y (0i(A) — 0i(B)) = | A~ Tu(A)|I?.

i=1

v



Best low-rank approximation

Quiz. Is the best rank-k approximation unique if oy > o417
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Best low-rank approximation
Theorem (Schmidt-Mirsky). Let A € R™*". Then

|A—Tk(A)|| = min {|A— B]|| : B € R™*" has rank at most k }

holds for any unitarily invariant norm || - ||.
Quiz. Is the best rank-k approximation unique if ox > ok41?

» If ok > ok11 best rank-k approximation unique wrt || - ||F.
> Wrt || - ||2 only unique if ox1 = 0. For example, diag(2, 1, ¢) with
0 < € < 1 has infinitely many best rank-two approximations:

2 00 2—¢/2 0 0 2—¢/3 0 0
0 1 0], 0 1—€¢/2 0], 0 1—-¢/3 0],....
0 0O 0 0 0 0 0 1

» If o = ok 1 best rank-k approximation never unique.
I3 has several best rank-two approximations:

1 00 1 00 0 0O
01 0,0 0 O], |0 1 0].
0 0O 0 0 1 0 0 1



Some uses of low-rank approximation

» Data compression.

» Fast solvers for linear systems: Kernel matrices, integral
operators, under the hood of sparse direct solvers (MUMPS,
PaStiX), ...

» Fast solvers for dynamical systems: Dynamical low-rank method.
» Low-rank compression / training of neural nets.

» Defeating quantum supremacy claims by Google/IBM.
Science’2022;

NEWS | PHYSICS

Ordinary computers can beat Google's quantum
computer after all

Superfast algorithm put crimp in 2019 claim that Google’s machine had achieved “quantum
supremacy”

2 AUG 2022 - 5:05PMET - BY ADRIAN CHO




Approximating the range of a matrix
Aim at finding a matrix Q € R™*¥ with orthonormal columns such that
range(Q) ~ range(A).

QQ' is orthogonal projector onto range(Q) ~» Aim at solving

min {|A— QQTA|: Q"Q = I}
for || -l € {ll - ll2, || - ||} Because rank(QQ"A) < k,

|A— QQTA| > |A-Ti(A)l.
Setting Q = Uy one obtains
UcULA = UkUTUZ VT = Uz Vi = Tr(A).

~ Q = U is optimal.
Low-rank approximation and range approximation
are essentially the same tasks!



Two popular uses of range approximation

Principal component
Dominant left singular vectors of data
., Xn] (with mean sub-
tracted) provide directions of maximum
variance, 2nd maximum variance, etc.

matrix X = [xi,..

analysis (PCA):

Proper orthogonal decomposition
(POD), reduced basis methods: Col-
lect snapshots of time-dependent and/or
parameter-dependent equations and
perform model reduction by projection
to dominant left singular vectors Uy of
snapshot matrix.



When to expect good low-rank approximations

Smoothness.

Example 1: Snapshot matrix with snapshots depending smoothly on
time/parameter

A = [u(t) u(k) - u(t)]
h(t) (k) 44(tn)
la(t) Lo(f2) lo(tn)
~ [P P2 o k] x . '
low-dim. polynomial basis Kg(h) Kg(fg) . 62(.1.”)

Vandermonde-like matrix
where u(t) = p(t) = p141(t) + - - - + pnln(t) (polynomial approximation
of degree k in basis of Lagrange polynomials).

If u:[-1,1] — R"” admits analytic extension to Bernstein ellipse &,
(focii £1 and sum of half axes equal to p > 1) then polynomial
approximation implies
< .k
ok(A) S max|ju(@)ll2 - o~

Exponential decay of singular values!



Smoothness.

When to expect good low-rank approximations

Example 2: Kernel matrix for smooth (low-dimensional) kernel:

K(X1,X1) K(X1, Xn)

K:

)

K(Xn, X1) K(Xn, Xn)

Hilbert matrix:

S

Kernel k(x,y)=1/(x+y —1).

-
i+j—1

1040

10'20

Exponential singular value decay establish

k:QxQ—R.

0

ed through Taylor

20 40 60 80 100

expansion [Bérm’2010] or exponential sum approximation

[Braess/Hackbusch’2005]:

1
X+Yy

k
~ > viexp(Bi(x +y

i=1

k
) = viexp(Bix) - exp(By).
i=



When to expect good low-rank approximations

Algebraic structure.
If X satisfies low-rank Sylvester matrix equation:

AX + XB = low rank

and spectra of A, B are disjoint then singular values of X (usually)
decay exponentially®.

> Basis of fast solvers for matrix equations.

» Captures many structured matrices: Vandermonde, Cauchy,
Pick, ... matrices, canoncial Krylov bases, .. ..

5Bernhard Beckermann and Alex Townsend. “On the singular values of matrices
with displacement structure”. In: SIAM J. Matrix Anal. Appl. 38.4 (2017),
pp. 1227-1248.



When not to expect good low-rank approximations

In most over situations:
» Kernel matrices with singular/non-smooth kernels

» Snapshot matrices for time-dependent / parametrized solutions
featuring a slowly decaying Kolmogoroff N-width.

> Images
» White noise
> ...
3 Exceptions to these rules:

Also: Low-rank methods are often used even when there is no
notable singular value decay in, e.g., statistical inference.



When not to expect good low-rank approximations
Consider kernel matrix

k(X1,X1) - K(X1,Xn)
K= : g , kK:DxD—R.

"é(Xm X1) T H(Xna Xn)
for 1D-kernel x with diagonal singularity/non-smoothness. Example:
H(Xay):exp(_|x_y|)v X,yE[O,ﬂ

Function Singular values

1078

0 20 40 60 80 100



But not everything is lost..
Block partition K. Level 1:

K1 Kiz Ki
K= = | .
[Km Kzz} :

Koo




But not everything is lost..
Block partition K. Level 2:

0. —
L T R TR TR 44

etc. ~ HODLR. More general constructions [Hackbusch’2015]:
» 7{-matrices = general recursive block partition.

» HSS/H?-matrices impose additional nestedness conditions on
the low-rank factors on different levels of the recursion.

Exciting news: Recovery of such matrices from mat-vec products®.
6D. Halikias and A. Townsend. Structured matrix recovery from matrix-vector
products. arXiv:2212.09841. 2022, J. Levitt and P. G. Martinsson. Linear-complexity

black-box randomized compression of rank-structured matrices. arXiv:2205.02990.
2022.




Stability considerations
What happens to SVD if A is perturbed by noise (roundoff error, ...)?
Weyl’s inequality:
|0i(A+ E) — oi(A)| < [|E]2.

Singular values are perfectly well conditioned.
Singular vectors tend to be less stable! Example:

1 0
A= {O 1+ 5} ’
. . 1 |0
> A has right singular vectors M , [1]

V2 —1
Wedin'1972: Error in Uk, Vi < ¢/[ok(A) — ok+1(A)].

: ; 1 1
1 1
> A+ E has right singular vectors —= M ' 75 [ ]

Bad news for stability of low-rank approximation?



Stability of low-rank approximation
Lemma. Let A € R™<™ have rank < k. Then

[T«(A+ E) — Al < C|E]|

holds with C = 2 for any unitarily invariant norm || - ||. For the
Frobenius norm, the constant can be improved to C = (1 +v/5)/2.
Proof. Schmidt-Mirsky gives || Tx(A+ E) — (A+ E)|| < ||E||. Triangle
inequality implies

[Tk(A+ E) = (A+ E)+ (A+ E) - Al <2|E].
Second part is result by Hackbusch’.

Implication for general matrix A:

| Tk (Tk(A) + (A — Tk(A)) + E) — Tu(A)]|
Cl(A—Tk(A)) + E|| < C(||[A— Tk(A)| + | EI).

[Tk(A+ E) = Tk (Al

N

Perturbations on the level of truncation error pose no danger.

"Hackbusch, W. New estimates for the recursive low-rank truncation of
block-structured matrices. Numer. Math. 132 (2016), no. 2, 303-328



Low-rank matrix
approximation algorithms

Landscape of algorithms



Landscape of algorithms
Choice of algorithm for performing low-rank approximation of A
depends critically on how A is accessed:
1. Small matrices: If m, n = O(102), don't think twice, apply svd.
2. Mat-vecs: A is accessed through matrix-vector products v — Av.

massive dense matrices, sparse matrices, implicit representation
(e.g., through matrix functions, Schur complements, .. .).

Randomized SVD and friends (e.g., block Lanczos)
Talk by Yuji Nakatsukasa

3. Entry-by-entry: Individual entries A(i, j) can be directly computed
but it is too expensive to compute/hold the whole matrix.
kernel matrices, distances matrices, discretizations of nonlocal
equations (integral eqgns, fractional diff egns), .. ..

Sampling-based techniques.

4. Semi-analytical techniques: Polynomial approximation,
exponential sum approximation, Random Fourier features.

5. Implicit: A satisfies linear system/eigenvalue problem/opt
problem/...

Alternating optimization, Riemannian optimization, .. ..



2. Deterministic sampling



Sampling based approximation

Aim: Obtain rank-r approximation of m x n matrix A from selected

entries of A.
Two different situations:
» Unstructured sampling: Let Q c {1,...,m} x {1,..., n}. Solve
min|A—BC|la,  MIZ= ) m.
(ij)eQ

Matrix completion problem solved by general optimization
techniques (ALS, Riemannian optimization, convex relaxation).

» Column/row sampling:

Focus of this part.



Row selection from orthonormal basis

Task. Given orthonormal basis U € R™*" find a “good” r x r submatrix
of U.

Classical problem already considered by Knuth.8

Quantification of “good”: Smallest singular value not too small.
Some notation:

» Given an m x n matrix A and index sets

I = {i1a"'7ik}7 1§i1<i2<"'ik§m,
J - {j1a"'7j[}a 1§j1<j2<"'j€§n7
we let
iy i iy
AL =1 o | e R
Qinji 7 Gimn

The full index set is denoted by :, e.g., A(/,:).
> | det A| denotes the volume of a square matrix A.

8Knuth, Donald E. Semioptimal bases for linear dependencies. Linear and
Multilinear Algebra 17 (1985), no. 1, 1-4.



Row selection from orthonormal basis

Lemma (Maximal volume yields good submatrix)

Let index set I, #1 = r, be chosen such that |det(U(1,:))| is
maximized among all r x r submatrices. Then

1
—— < r(n—r)+1
omin(U(1,2)) ( )
Proof.® W.l.o.g. I = {1,...,r}. Consider
I —1 Ir
U=uu(l,)" = <B> .

Because of det U(J,:) = det U(J,:)/ det U(1,:) for any J, submatrix _
#J = r, U(/,:) has maximal volume among all r x r submatrices of U.

9Following Lemma 2.1 in [Goreinov, S. A.; Tyrtyshnikov, E. E.; Zamarashkin, N. L. A
theory of pseudoskeleton approximations. Linear Algebra Appl. 261 (1997), 1-21].



Maximality of U(/, :) implies max |b;| < 1. Argument: If there was bj
with |b;| > 1 then interchanging rows r -+ i and j of U would increase
volume of U(/,:).

We have

1Bll2 < |BllF < v/(n = r)rmax|by| < v/(n—r)r.

This yields the result:

10 2 = 10U ) M2 = /1T +IBIZ < V1 +(n—n)r



Greedy row selection from orthonormal basis

Finding submatrix of maximal volume is NP hard.®
Greedy algorithm (column-by-column):'
> First step is easy: Choose i such that |uj;| is maximal.

» Now, assume that k < r steps have been performed and the first
k columns have been processed. Task: Choose optimal index in
column k + 1.

There is a one-to-one connection between greedy row selection and
Gaussian elimination with column pivoting!

10Civril, A., Magdon-Ismail, M.: On selecting a maximum volume sub-matrix of a
matrix and related problems. Theoret. Comput. Sci. 410(47-49), 4801-4811 (2009)
" Reinvented multiple times in the literature.



Greedy row selection from orthonormal basis

Simplified form of Gaussian elimination with column pivoting:
Input: n x r matrix U
Output: “Good” index set I C {1,...,n}, #l=r.

Set I = 0.

fork=1,...,rdo

Choose i* = argmax;_; _ ,|Ui].
Set I« U J*.
U+~ U- ﬁU(:7k)U(/*, )
end for
Theorem

For the index set returned by greedy algorithm applied to orthnormal
U € R™" jt holds that

|U(l,:)~ 2 < V/nr2r 1.

Performance of greedy algorithm in practice often quite good,
although this bound is sharp.



Counter example for greedy

Let U be Q-factor of economy sized QR factorization of n x r matrix

Variation of famous example by Wilkinson. Greedy performs no
pivoting, at least in exact arithmetic.

101

10°
0 10 20 30

|U(1,:)~"||2 vs. r for n = 100 returned by greedy.



Improvements over greedy

Improve upon maxvol-based greedy (in a deterministic framework)
via Knuth’s iterative exchange of rows. Given index set I, #/ = r, and
w>1, p~1, form

U=uu,).

Search for largest element

(i*,J*) = argmax|uj|.

|y | < pa, (1)

terminate algorithm. Otherwise, set / + N\{j*} U {i*} and repeat.

Alternative: Apply existing methods for rank-revealing QR to U’
[Golub/Van Loan’2013].



Vector approximation

Goal: Want to approximate vector f in subspace range(U). For
I'={i,..., ik} define selection operator:

S; = [e,-1 e, - e,-k] .

Minimal error attained by orthogonal projection UUT. When replaced
by oblique projection
uesjiu)-'sff

increase of error bounded by result of lemma.
Lemma
If = USTU)T'S[ flla < [(STU) V2 - [|f = UUTH||2.
Proof. Let 1M = U(S]U)~'S]. Then
I( = M)fll2 = [[(1 = M)(f = UUT D)l < |1 = A2} — UUTH2.
The proof is completed by noting (and using the exercises),

1=z = 1Nz < 1(STU) 'S Il = S/ U) " [l



Connection to interpolation

We have
sf(I-uEsfuy-'s])=0
and hence
IST(f = U(STU)7'S] )]z = 0.
Interpretation: f is “interpolated” exactly at selected indices.

Example: Let f contain discretization of exp(x) on [—1,1] let U
contain orthonormal basis of discretized monomials {1, x, x2,...}.

0.2

0.1

0

04 1)

02}




Connection to interpolation

lteration 1, Err ~ 14.8 lteration 2, Err =~ 5.7
3 3
25 25
2 2
15 15
1 1
0.5 0.5
0—1 -0.5 0 0.5 1 O—1 -0.5 0 0.5 1
Iteration 3, Err = 0.7 lteration 4, Err ~ 0.14
3 3
25 25
2 2
15 15
1 1
0.5 0.5




Connection to interpolation

Comparison between best approximation, greedy approximation,
approximation obtained by simply selecting first r indices.

10°

10710
0

Terminology:

» Continuous setting: EIM (Empirical Interpolation method),
[M. Barrault, Y. Maday, N. C. Nguyen, and A. T. Patera, An “empirical interpolation” method:
Application to efficient reduced-basis discretization of partial differential equations, C. R.
Math. Acad. Sci. Paris, 339 (2004), pp. 667—-672].

> Discrete setting: DEIM (Discrete EIM),

[S. Chaturantabut and D. C. Sorensen. Nonlinear model reduction via discrete empirical
interpolation. SIAM Journal on Scientific Computing, 32(5), 2737-2764, 2010].



POD+DEIM
Consider LARGE ODE of the form
x(t) = Ax(t) + F(x(1)).

Ais n x n matrix. I[dea of POD'2:

1. Simulate ODE for one or more initial conditions and collect
trajectories at discrete time points into snapshot matrix:

X=(x(ty) - x(tm)).

2. Compute ONB V € R™', r « n, of dominant left subspace of X
(e.g., by SVD).

3. Assume approximation x ~ UU' x = Uy and project dynamical
system onto range(U):

y(t) = UTAUy(t) + UTF(Uy(1)).

12See [S. Volkwein. Proper Orthogonal Decomposition: Theory and Reduced-Order
Modelling. Lecture Notes, 2013] for a comprehensive introduction.



POD+DEIM

Problem: UT F(Uy(t)) still involves (large) dimension of original
system.

Using DEIM:
UTF(Uy(1) ~ (S]U)~"S] F(Uy(1)).
y(t) = UTAUy(t) + (STU) 'S F(Uy(t)).

~» Only need to evaluate #/ = r instead of n entries of function F.
Particularly efficient for
fi(x) fi, (i)
Foo=1 = S[F(Uy(t)=|
fo(Xn) fi(x;.)

Example from [Chaturantabut/Sorensen’2010]: Discretized
FitzHugh-Nagumo equations involve F(x) = x ® (x = 0.1) ® (1 — x).



The CUR decomposition: Existence results

A= CUR,
where C contains columns of A, R contains rows of A, U is chosen

“wisely”.

Theorem (Goreinov/Tyrtyshnikov/Zamarshkin’1997). Let

¢ := ok+1(A). Then there exist row indices /  {1,..., m} and
column indices J C {1,...,n} and a matrix S € R¥*¥ such that

|A—A(:,J)SA(L )|z < (1 + 2vVk(Vm +v/n)).

Proof. Let Uy, Vi contain k dominant left/right singular vectors of A.
Choose /, J by selecting rows from Uk, Vi. According to max volume
lemma, the square matrices U = Uk(1,:), V = Vik(J,:) satisfy

10 e < VK(m=K)+1, V"2 < Vk(n— k) + 1.

+ complicated choice of S.



The CUR decomposition: Existence results

Choice of S = (A(/,J))~" in CUR ~ Remainder term
R:=A— A J)(A(LJI))TA(,:)
has zero rows at / and zero columns at J.

Cross approximation:

1 3 6 136
2
z W=
7
4
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Adaptive Cross Approximation (ACA)

A more direct attempt to find a good cross..

As we already know, finding A4 is NP hard
[Givril/Magdon-Ismail'’2013].

45/130



Adaptive Cross Approximation (ACA)

ACA with full pivoting [Bebendorf/Tyrtyshnikov’2000]

1: SetRy :=A, I'={}, J:={}, k:=0

2: repeat

3: k:=k+1

4: (ix,jx) == argmax;; |Rk—1(/, )|

5. 1 1U{i}, J+ JU L)

6: = Hk—1(ik,jk)

7: Uk = Rk71(:;jk)7 Vg 1= Rk,1(llk, :)T/ék

8: Ry := Rk_1 — UkV,Z—

9: until ||Rx||r < ¢|Allr

» This is greedy for maxvol.

» Still too expensive for general matrices.



Adaptive Cross Approximation (ACA)

ACA with partial pivoting

1: Set Ry =A, I'={},J={}, ki=1,7i" =1
2: repeat

3 Jj*:=argmax; |Rk_1(i*,J)|

4: Ok == Rk,1(ll*,j*)

5. if 6k = 0 then

6: if #/ = min{m, n} — 1 then

7: Stop

8: end if

9: else

10: Uk = Rk_1(:,j*), Vg = Rk_1(i*, :)T/(Sk
11: Ry .= Rk_q1 — UkV;Z—

12: k:=k+1

13:  end if

14 T+ 1U{i*}, J« JU{*}
15:  [* := arg maxijg |Uk(/)]
16: until stopping criterion is satisfied



Adaptive Cross Approximation (ACA)

ACA with partial pivoting. Remarks:
» Ry is never formed explicitly. Entries of Rk are computed from

=

Rk(l7j) = A(’v/) - Z Ug(i)Vg(j).

£=1

> Ideal stopping criterion ||uk||2||vk||2 < ¢||A||F elusive.
Replace ||Al|r by ||Ak||F, recursively computed via
k—1
T T
IAE = A1 11F +2 ug uy vic + lluk13l v 3-
j=1



Adaptive Cross Approximation (ACA)

Two 100 x 100 matrices:
(@) The Hilbert matrix A defined by A(i,j) =1/(i+j—1).

(b) The matrix A defined by A(/, j) = exp(—~|i — j|/n) with v = 0.1.

14 = Ao/ || All»

10

=)

0

&

S

15

Hilbert matrix

—Tull pivoting

= Partial pivoting
==-SVD

10 15 20 25

30

14— Ao/ A]l>

Exponential matrix

—TFull pivoting
= Partial pivoting
===SVD

20

1. Excellent convergence for Hilbert matrix.
2. Slow singular value decay impedes partial pivoting.



ACA for SPSD matrices

For symmetric positive semi-definite matrix A € R"*":
» SVD becomes spectral decomposition.
» Can use trace instead of Frobenius norm to control error.
» Remainder Ry stays SPSD.
» Rows/columns can be chosen by largest diagonal element of Ry.
» ACA becomes

= Cholesky (with diagonal pivoting); see [Higham’1990].
= Nystrém method [Williams/Seeger'2001].

» DEIM-like error bound [Harbrecht/Peters/Schneider'2012],
[Cortinovis/DK/Massei’2020]:

IRKllc < 4 oks1(A),
This is the only known situation (of practical relevance), for which a

deterministic method only needs to see O(nk) entries of A and still
satisfies an error bound.



3. Stochastic sampling



Randomized column/row sampling

Aim: Obtain rank-r approximation from randomly selected rows and
columns of A.

Popular sampling strategies:
» Uniform sampling.
» Sampling based on row/column norms.

» Sampling based on more complicated quantities (leverage
scores).



Preliminaries on randomized sampling
Exponential function example from before.

Comparison between best approximation, greedy approximation,
approximation obtained by randomly selecting rows.

10° 100
10 10°°
10710 10710

0 2 4 6 8 10 0 2 4 6 8 10
10° 10°
10 10

10710 10710
0 0



Preliminaries on randomized sampling

A simple way to fool uniformly random row selection:

U= 0(nfr)><r
Ir

for nvery large and r < n.



Column sampling

Basic algorithm aiming at rank-r approximation:

1.

Sample (and possibly rescale) k > r columns of A
~ m x k matrix C.

. Compute SVD C = ULV and set Q = U, € R™".
. Return low-rank approximation QQTA.

Can be combined with streaming algorithm [Liberty’2007] to limit
memory/cost of working with C.

Quality of approximation crucially depends on sampling strategy.



Column sampling

Lemma
For any matrix C € R™*', let Q be the matrix computed above. Then

|A— QQTA|3 < 0,1(A)% + 2||AAT — CCT .

Proof. We have

(A— QQTA)A-QQ"A)T
= (I-QQ")ceT(1-QQ") + (I-QQ")(AAT — ccT)(1 - QQ")

Hence,

IA—QQTA|;

Amax (A — QQTA)(A— QQTA)T)
Amax (I = QQT)CCT(1- QQT)) + |AAT — CCT|>
ar41(C)? + |AAT — CCT 2.

IN

The proof is completed by applying Weyl’s inequality:
or11(C)? = A\ 11(CCT) < My 1 (AAT) + |AAT — CCT .



Random column sampling

Using the lemma, the goal now becomes to approximate the matrix
product AAT using column samples of A.
Notation:

A:[a1 an]’ C:[C1 Ck]

General sampling method:

Input: A € R™*" probabilities py,...,pn # 0, integer k.

Output: C € R™*X containing selected columns of A.
1: fort=1,... . kdo

2. Pickjre{1,...,n}withP;={=pe, ¢=1,...,n,
independently and with replacement.
3: Setc = a;/\/kpj.

4: end for



Random column sampling

One has
E[|AAT - CCT2] = S E[(AAT - CCT)]
i
— Y varf(ccTy)
i
(55w
= i
k ralee k
. [Z T ladd — 1aaT 2] .
K= P
Lemma

The choice p, = ||a¢||3/||Al|2 minimizes E[||AAT — CCT 2] and yields

E[|AAT — CCT|#] = U|AHF — | AAT|E]

k

Proof. Established by showing that this choice of p, satisfies
first-order conditions of constrained optimization problem.



Random column sampling

Norm based sampling:

Input: A€ R™" integer k.

Output: C € R™X containing selected columns of A.

: Setp, = ||a|3/||A|2 for ¢ =1,...,n.

2: fort=1,....kdo
Pick i e {1,....ntwithP[j;={¢=p,, £ =1,...,n,
independently and with replacement.
Set ¢; = a,/\/kpj,

end for

- Compute SVD C = UxX VT and set Q = U, € R™*",

. Return low-rank approximation QQ A.

—_

w



Random column sampling
By Azuma-Hoeffding inequality:
Theorem (Drineas/Kannan/Mahoney’2006)
For the matrix Q returned by the algorithm above it holds that

E[IIA— QQTA|3] < o?1(A) +e|Alf fork > 4/<%.
With probability at least1 — 6,
1A~ QQTAB < 0%, (A) + <[ Al2 for k > 4(1 + /8 log(1/3))? /<2,

Proof. Follows from combining very first lemma with last two lemmas.
Remarks:

» Dependence of k on ¢ pretty bad. Unlikely to achieve something
significantly better without assuming further properties of A (e.g.,
incoherence of singular vectors) with sampling based on row
norms only.

» Simple “counter example”:

62> c RMX(n+1).

Sl

1 1
A= <%61 ﬁe1 %61



Random column sampling

[Drineas/Mahoney/Muthukrishnan’2007]: Let Vi contain k dominant
right singular vectors of A. Setting

pe = V()3 /k,  £=1,....n
and sampling O(k?(log 1/6)/<2) columns'® yields
1A= QQTA|lF < (1 +¢)lIA— Tu(A)llF

with probability 1 — 4.

Relative error bound!

CUR decomposition can be obtained by applying ideas to rows and
columns (yielding R and C, respectively) and choosing U
appropriately.

Many improvements: For example, it is enough to have a rough

approximation of || Vi (¢, :)||2, which can be refined iteratively
[Luan/Pan’2023].

13There are variants that improve this to O(k log k log(1/58)/£?).



4. Tensors



First steps with tensors



Vectors, matrices, and tensors

Vector Matrix Tensor

scalar = tensor of order 0
(column) vector = tensor of order 1
matrix = tensor of order 2

tensor of order 3
= nyn2n3 numbers arranged in Ny x N x ng array

vvyyvyy



Tensors of arbitrary order

In the following, entries of X" are usually real (for simplicity) ~

X € RMXMexxng.
Multi-index notation:
J={1,....m}x{1,...;m} x---x{1,...,ng}.
Then j € Jis a tuple of d indices:
i=(h,h,...,Ig).

Allows to write entries of X as X for i € 7.
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Two important points

1. A matrix A € R™*" has a natural interpretation as a linear
operator in terms of matrix-vector multiplications:

A:R"R™ A:x— A-Xx.

There is no such (unique and natural) interpretation for tensors!

~ fundamental difficulty to define meaningful general notion of
eigenvalues and singular values of tensors.

2. Number of entries in tensor grows exponentially with d ~
Curse of dimensionality.

Example: Tensor of order 30 with ny = n, = --- = ngy = 10 has
1030 entries = 8 x 10'? Exabyte storage!'*

For d >> 1: Cannot afford to store tensor explicitly (in terms of its
entries).

4Global data storage a few years ago calculated at 295 exabyte, see
http://www.bbc.co.uk/news/technology-12419672.


http://www.bbc.co.uk/news/technology-12419672

Basic calculus
» Addition of two equal-sized tensors X', ):
Z=X4+)Y & Z=X+)Y Viel.
» Scalar multiplication with a € R:
Z=aX & Zi=aX; VieT.
~» vector space structure.

» Inner product of two equal-sized tensors X', V:
<Xay> = inyi-
i€J
~ Induced norm iy
)= (D)
i€J

For a 2nd order tensor (= matrix) this corresponds to the usual
Euclidean geometry and Frobenius norm.



Vectorization

Tensor X of size ny x no x --- x nghas ny - no - - - ng entries
~> many ways to stack entries in a (loooong) column vector.

One possible choice:

Example: d =3,n1 =3, n. =2, n3 = 3.

X111
X211
X311
X121
vec(X) =
X123

X223
L Xazz
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Matricization

» A matrix has two modes (column mode and row mode).
» A dth-order tensor XY has d modes (u =1, u =2, ..., u=d).
Let us fix all but one mode, e.g., x = 1: Then

Xy, iz, ..y ig) (abuse of MATLAB notation)
is a vector of length n; for each choice of iz, ..., iy. These vectors are
called fibers.

~» View tensor X as a bunch of column vectors:




Matricization

Stack vectors into an ny x (e - - - ng) matrix:

LN A AL
X € RMXMxXng X(1) c RM™ X (Nang---ny)
For u=1,...,d, the u-mode matricization of X" is a matrix

X ¢ RMX (M- i Mgy-Na)
with entries

(x0) =X Vied.
iu1 a(i17--~7iu717iu+1-~~id)



Matricization

In MATLAB: a = rand(2,3,4,5);
» 1-mode matricization:
reshape (a, 2, 3x4%5)
» 2-mode matricization:

b = permute(a, [2 1 3 41]);
reshape (b, 3,2%4%x5)

» 3-mode matricization:

b = permute(a,[3 1 2 41);
reshape (b, 4,2x3%5)

» 4-mode matricization:

b = permute(a,[4 1 2 31);
reshape (b, 5,2%3%4)

For a matrix A € RM*":



u-mode matrix products

Consider 1-mode matricization X(1) ¢ R > (2:-na).

Seems to make sense to multiply an m x n; matrix A from the left:
Y = AX() ¢ Rmx(nena)

Can rearrange Y(") back into an m x np x --- x ny tensor .
This is called 1-mode matrix multiplication

Y=Ao1 X & Y = Ax™
More formally (and more ugly):

Vicsioyeoia = D 8ir kXk iy, iy
k=1



u-mode matrix products

General definition of a u-mode matrix product with A € R™*™:
Y=Ao, X o y() — Ax(#)

More formally (and more ugly):

k=1

For matrices:
» 1-mode multiplication = multiplication from the left:

Y=Ao X=AX.
» 2-mode multiplication = transposed multiplication from the right:

Y=Ao, X =XAT.



p-mode matrix products and vectorization

By definition,
vec(X) = vec(X™).

Consequently, also
vec(Aor X) = vec(AX(M).
~ Vectorized version of 1-mode matrix product:
vec(Ao1 X) = (In...ny @ A)vec(X)
= (hy® - ® lp, ® A)vec(X).
Relation between p-mode matrix product and matrix-vector product:

Vee(A oy X) = (Iny @+ & I, ®A® by, , - @ In,) vec(X)



Summary

» Tensor X € R™m* > js a d-dimensional array.

» Various ways of reshaping entries of a tensor X into a vector or
matrix.

» u-mode matrix multiplication can be expressed with Kronecker
products

Further reading:

> T. Kolda and B. W. Bader. Tensor decompositions and
applications. SIAM Rev. 51 (2009), no. 3, 455-500.

Software:

» MATLAB (and all programming languages) offer basic
functionality to work with d-dimensional arrays.

» MATLAB Tensor Toolbox: http://www.tensortoolbox.org/


http://www.tensortoolbox.org/

Applications of tensors



Two classes of tensor problems
Class 1: function-related tensors

Consider a function u(&y,...,&q) € Rin d variables &4, . . ., &q.
Tensor U € R™M* %M represents discretization of u:

» U/ contains function values of u evaluated on a grid; or

» U contains coefficients of truncated expansion in tensorized
basis functions:

U, &a) = Y Ui i (€)d5(&2) - b1 (a)-
i€J
Typical setting:

» U only given implicitly, e.g., as the solution of a discretized PDE;

> seek approximations to ¢/ with very low storage and tolerable
accuracy.

» d may become very large.



Discretization of function in d variables

&,...,€a €10, 1]
~ #function values grows exponentially with d




Separability helps

Ideal situation:
Function f separable:

f(&1.&2, -1 &a) = H(&) (&) - - - Ta(Ed)

Kronecker produc\

S B RS

discretized f |

\ diskretized f

O(n9) memory ~»

O(dn) memory

Of course:

Exact separability rarely satisfied in
practice.




Two classes of tensor problems
Class 2: data-related tensors
Tensor U € R™M>* X4 contains multi-dimensional data.

Example 1: Us011,3.2 denotes the number of papers published 2011
by author 3 in the mathematical journal 2.

Example 2: A video of 1000 frames with resolution 640 x 480 can
be viewed as a 640 x 480 x 1000 tensor.

Example 3: Hyperspectral images.

Example 4: Deep learning: Coefficients in each layer of deep NN
stored as tensors (TensorFlow), Interpretation of RNNs as
hierarchical tensor decomposition.

Typical setting (except for Example 4):
> entries of U often given explicitly (at least partially).
» extraction of dominant features from /.
» usually moderate values for d.



Low-rank tensor techniques

» Emerged during last 15 years in scientific computing.
» Successfully applied to:

>

vvyy

vVvVvvYyVvYVYyYy

quantum many body problems;
parameter-dependent / multi-dimensional integrals;
electronic structure calculations: Hartree-Fock / DFT;
stochastic and parametric PDEs;

high-dimensional Boltzmann / chemical master / Fokker-Planck /
Schrédinger equations;

micromagnetism;

rational approximation problems;

computational homogenization;

computational finance;

multivariate regression and machine learning;
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The CP decomposition



CP decomposition

» Aim: Generalize concept of low rank from matrices to tensors.
» One possibility motivated by

T
X = [31732,...,aﬁ}[b*],bz,...,bﬁ] =
= a1b1T+agb27+---+aRbE.
~» vectorization
vec(X):b1 Qa+b@a + -+ br® ag.

Canonical Polyadic decomposition of tensor X € R™*™*"% defined
via

vec(X)
X

CiObiRa+co®b®a+ -+ CcrR®br® ar
aiobjocCi+aobsoco+---+arobgocr

for vectors a; € R™, b; € R™, ¢; € R™.

CP directly corresponds to semi-separable approximation.
Tensor rank of X = minimal possible R



CP decomposition
lllustration of CP decomposition

X=aobjocy+aobsocy+---+arobrocpg.

= o oo+ b
X a ar

More compact notation:

vec(X) = [A, B, C],

with

>

[ai,...,ag) e R"*F
B = |[by,...,bgl e R®=*F
C = [C1,...,CR]€Rn3XR



Dismissal of CP decomposition

Despite its simplicity, the CP decomposition comes with a lot of
problems [Silva/Lim’2008], [Kolda/Bader’2009]:

» Tensor rank can be extremely difficult to determine.

<12 Quanta i Physics Mathematics  Biology ~Computer Science  Topics ~ Archive [RI-Y

Al Reveals New Possibilities in Matrix
Multiplication

» Tensor rank is not lower semi-continuous.
» Real £ complex tensor rank.
» No simple quasi-optimal approximation algorithm known.



The Tucker decomposition



Tucker decomposition
> Alternative rank concept for tensors motivated by
A=U-x- VT, UeRM" " VeR™* ¥ eR™.
~» vectorization
vec(X) = (V& U) - vec(T).

Ignore diagonal structure of * and call it C.
Tucker decomposition of tensor X € R™*™*" defined via

vec(X) = (W V@ U) - vec(C)

with U € RM* |V e R™2X%2 W ¢ RMBX/5,
and core tensor C € R *2x%s,

In terms of y-mode matrix products:

X=Uoy Vo WozC=:(U,V,W)oC.



Tucker decomposition

lllustration of Tucker decomposition

X=(UV,W)ocC

SwS




Tucker decomposition
Consider all three matricizations:
X0 = y.c. (we V),
X® = v.c®. (weu),
X® — w.c®.(veu)

These are low rank decompositions ~»

rank(X(M) <, rank(X®) <r, rank(X®)) <rs.
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Higher-order SVD (HOSVD)

Goal: Approximate given tensor X by Tucker decomposition with
prescribed multilinear rank (ry, r2, r3).

1. Calculate SVD of matricizations:
X = U,x, VI forp=1,23.

12

2. Truncate basis matrices:
U, = Dﬂ(:71 :r,) forp=1,23.
3. Form core tensor:
C:=Uf oy Uj 0 U] 03 X.

Truncated tensor produced by HOSVD [Lathauwer/De
Moor/Vandewalle’2000]:

X = Uj o1 Us op Us o3 C.

Remark: B
Orthogonal projection X := (w1 o mp 0 m3) X with m, X := U, U] o, X.



Higher-order SVD (HOSVD)

Theorem. Tensor X resulting from HOSVD satisfies quasi-optimality
condition N
”X — X” < \/HHX = Xbest”;

where Xyeqt IS best approximation of X with multilinear ranks
(Fy...,rg).

Proof:

1% — X% = | & — (m1 0 72 0 m3) X2
= |& = X2 + || X — (71 o m) X2+ - -
<o+ ||(my o m2) X — (71 02 o7T3)X||2
<X = m X2+ X — mX|? + X - meX|?
Using
X — 7, X < || X — Xpest|| forp=1,2,3

leads to B
1% = X <8+ | = Apest



Approximation error obtained from HOSVD

Another direct consequence of the proof:

Corollary. Let o{*) denote the kth singular of X(). Then the
approximation X’ obtained from the HOSVD satisfies

8! Ny
I -FPR <> Y (02

p=1k=r,+1

This also implies a lower bound for || X' — Apest|| in terms of the
singular values of the matricizations of X'.

» SVD can be replaced by any low-rank approximation technique
discussed in this course. By triangular inequality, bound of
Corollary still holds with an extra term accounting for the inexact
SVD.

» Approximation error can be improved by alternativing
optimization (HOOI), but often not worth bothering.



Tucker decomposition — Summary

For general tensors:
» multilinear rank r is upper semi-continuous ~ closedness
property.
» HOSVD - simple and robust algorithm to obtain quasi-optimal
low-rank approximation.

> quasi-optimality good enough for most applications in scientific
computing.

» robust black-box algorithms/software available (e.g., Tensor
Toolbox).

Drawback:

Storage of core tensor ~ r?
~ curse of dimensionality



The Tensor Train
decomposition



Tensor network diagrams

» Introduced by Roger Penrose.

» Heavily used in quantum mechanics (spin networks).
> Useful to gain intuition and guide design of algorithms.
» This is the matrix product C = AB:

(. O
N\ N\

,
Cj=>_ AuBy
k=1




Tensor of order 3 in Tucker decomposition

n 2 3

Xk = Z Z Z Cor0p03 Uie, Viey Wi,

£3=1 Lr=1 £3=1

> r; X I X r3 core tensor C

> ny x rp matrix U spans first mode

> o x r, matrix V spans second mode
> n3 x r3 matrix W spans third mode.



Tensor of order 6 in TT decomposition

> X implicitly represented by four r x n x r tensors and two n x r
matrices

» More detailed picture:

U (0 20 (0 (s (v
OO

n no ns N Ns = Ne




Tensor Train (TT) decomposition

A tensor X is in TT decomposition if it can be written as

r Iog—1

X(inyosda) =Y Y Us(1, i ke)Ua(Ky, o, Ke) -+ Ua(Kg—1, 7, 1).
ki=1 Kg—1=1

» Smallest possible tuple (rq,...,rq—1) is called TT rank of X.

> U, € Ru-1*"xu (formally set rp = ry = 1) are called TT cores
foru=1,...,d.

» If TT ranks are not large ~ high compression ratio as d grows.

» TT decomposition multilinear wrt cores.

» TT decomposition connects to

> matrix products ~ Matrix Product States (MPS) in physics (see
[Grasedyck/DK/Tobler'2013] for references)

» simultaneous matrix factorizations ~» SVD-based compression

» contractions and tensor network diagrams ~ design of efficient
contraction-based algorithms



Inner product of two tensors in TT decomposition

N\ N N N\

» Carrying out contractions requires O(dnr*) instead of O(n9)
operations for tensors of order d.



TT decomposition and matrix products

ra—1

n
X(ivyosda) =Y Y Us(1, i kn)a(Ke, o, o) - - Ua(Kg—1, i, 1).

k=1 kg_1=1

Let U, (i,) be i,th slice of uth core: U,,(i,) == U,(:, iy, :) € Ru—1%"k,
Then
X(it, b, ... ig) = Ui (it) Ua(i2) - - Ug(ia)-

Remark: Error analysis of matrix multiplication [Higham’2002] shows
that TT decomposition may suffer from numerical instabilities if

[Us (i) l[2l|U2(i2) |2 - - - [|Ua () |2 > [X (i1, by - . . s dg)]-

See [Bachmayr/Kazeev: arXiv:1802.09062] for more details.



TT decomposition and matrix factorizations

k1,k2,...,kd,1

Forany 1 < pu < d— 1 group first  factors and last d — . factors
together:

iH, /:“_»'_1 g e Id)

X (i, ..
ZM ( Z U1 (1,71, ki) - (k#,1,iﬂ,ku))
.(k

.....

Z Z/{;HH (k;u Ip,+1 ) ku+1) T Z/[d(kdf1 ) id, 1))

s K1

This can be interpreted as a matrix-matrix product of two (large)
matrices!



TT decomposition and matrix factorizations

The uth unfolding of X € RM*xxM ig obtained by arranging the
entries in a matrix

X<k> c RMmnze-nu) X (Mug1---nq)
where the corresponding index map is given by

LM X XN Ny, Nyt on ] ] i }
. RM d— RM M RwttNd (117...,/d):(/row,/col),

1% v—1
irow = 1 + Z( - 1 H nf[-7 Ic0| = 1 + Z - 1) H n7—.
v=1

v=p+1 T=p+1



TT decomposition and matrix factorizations
Define interface matrices

X<H c Rmngmnuxru’ X>M+1 c Rruxnu+1nu+2~~~nd

as

X< pu(irow; J) Do Wi k) Ut (K2 s K WUy (K, s )

Kt seeorky 1

Xopi1(f, leat) = Z U1 s Bt s Kt W2 (Kt s dge, Kg2) - - Ua(Kg—1, g, 1

K1 Kg—1

Lemma
The TT rank of a tensor is given by

(rank X<'>,... rank X<971>)
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Truncation in TT format

Lemma follows from TT-SVD [Oseledets’2011]) for approximating a
given tensor X in TT format:

Input: X € R™* > target TT rank (ry,...,rq—1).

Output: TT cores U, € R™~1*">/u that define a TT decomposition

1:

o N2aRs D

approximating X
Set iy = ry = 1. (and formally add leading singleton dimension to
X e R1><n1><---><nd).
forp=1,...,d—1do
Reshape X into X<2> ¢ R/ u—1MuX st
Compute rank-r,, approximation X<2> ~ UX V' (e.g., via SVD)
Reshape U into U, € Rfu—1*M>/k,
Update X via X<?> « UTX<>> =y V7.
end for
Set Uy = X.



Truncation in TT format

Theorem
Let Xsyp denote the tensor in TT decomposition obtained from
TT-SVD. Then
[ & — Xsvol| < \/m’
where

5i = ||X<+> — 7;u(X<N>)||,25 — Uru+1(X<“>)2 4.

Corollary

Let Xyest denote the best approximation of X with TT rank
(ry...,rg—1). Then

X — Xsvol| < Vd —1[|X — Xbest|-



TT decomposition — Summary of operations
Easy:
» (partial) contractions
» multiplication with operators in suitable format (MPO)
» compression/recompression

Medium:
> entrywise products

Hard:
> almost everything else

Software:
» TT toolbox (Matlab, Python), ...

Ongoing research:
Effective randomized techniques [Ma/Solomonik’2022, Al Daas et
al’2023, DK/Vandereacken/Vorhaar'2023, . . .].



5. Alternating Optimization



Alternating least-squares / linear scheme

General setting: Solve optimization problem

min f(X),

where X is a (large) matrix or tensor and f is “simple” (e.g., convex).
Constrain X to M., set of rank-r matrices or tensors and aim at
solving

in f(X
x”Q'AZ,( ),

Set
X =i(Us, Us, ..., Uy).

(e.g., X = Ui U]). Low-rank formats are multilinear ~» hope that
optimizing for each component is simple:

n&in f(l(U17 U2, ey Ud))

“w



Alternating least-squares / linear scheme
Set f(Us, ..., Uy) == f(i(Us,..., Uy)).
ALS:

1: while not converged do

2: U < argminy, f(i(Us, Uz, ..., Ug))
8 Uz < argminy, f(i(Uy, Uz, ..., Uq))
4

5. Uy < argminy, f(i(Us, Uz, ..., Uy))

6: end while
Examples:

» ALS for fitting CP decomposition

» Subspace iteration.
Closely related: Block Gauss-Seidel, Block Coordinate Descent.
Difficulties:

» Representation (U, U, . .., Uy) often non-unique, parameters
may become unbounded.

> M, not closed
» Convergence (analysis)



2D eigenvalue problem

> —Au(x)+ V(x)u=Au(x)inQ=[0,1] x [0, 1]
with Dirichlet b.c. and Henon-Heiles potential V
» Regular discretization

» Reshaped ground state into matrix

Ground state Singular values

A

0 1045

0 100 200 300

Excellent rank-10 approximation possible



Rayleigh quotients wrt low-rank matrices

Consider symmetric n? x n® matrix A. Then

. (X Ax)
Amin(4) = o (x,x) ~
We now...
» reshape vector x into n x n matrix X;

> reinterpret Ax as linear operator A : X — A(X).



Rayleigh quotients wrt low-rank matrices

Consider symmetric n? x n® matrix A. Then

with matrix inner product (-, -). We now...
> restrict X to low-rank matrices.



Rayleigh quotients wrt low-rank matrices

Consider symmetric n? x n® matrix A. Then

(X, A(X))

Amin(A)> i TX, X)

» Approximation error governed by low-rank approximability of X.
» Solved by Riemannian optimization techniques or ALS.



ALS for eigenvalue problem

ALS for solving
(X, A(X))
Ami (A)NX rl?\l/r};eo (X, X) -
Initially:
» fix target rank r
> U e R™ V™" randomly, such that V is ONB

A—A=6x103

residual = 3 x 10° ‘ (“'i)” }‘
“ ‘YI ’1 ‘ "

“‘l) il ‘

|
m

'.: (hy 1
W L




ALS for eigenvalue problem
ALS for solving

ol % K

Fix V, optimize for U.

(X, AX)) = vec(UVT)T Avec(UVT)
= vec(U)" (Ve NTA(V @ lvec(U)

~ Compute smallest eigenvalue of reduced matrix (rn x rn) matrix
(Ve TAVaI).

Note: Computation of reduced matrix benefits from Kronecker
structure of A.



ALS for eigenvalue problem

ALS for solving
(X, A(X))

Amin(A)x=  min 0

x=uvizo (X, X)
Fix V, optimize for U.

A—2=2x108
residual = 2 x 103




ALS for eigenvalue problem
ALS for solving

Amin(A)> | i XX
Orthonormalize U, fix U, optimize for V.

(X, AX)) = vec(UVT)T Avec(UVT)
= vec(VN(le U)TA(l ® U)vec(VT)

~ Compute smallest eigenvalue of reduced matrix (rn x rn) matrix
(lo )TA(l® U).

Note: Computation of reduced matrix benefits from Kronecker
structure of A.



ALS for eigenvalue problem
ALS for solving

il )% 0 XK

Orthonormalize U, fix U, optimize for V.

A=—2A=15x10"7
residual = 7.7x 103




ALS

ALS for solving

il )% 0 XK

Orthonormalize V, fix V, optimize for U.

A—2A=1x10"12
residual = 6 x 10~7




ALS for eigenvalue problem
ALS for solving

il )% 0 XK

Orthonormalize U, fix U, optimize for V.

A=—A=76x10"13
residual = 7.2x 108




Extension of ALSto TT

Recall interface matrices
X<H_1 c Rn1n2-~~nu><ru,1’ X># c Rnu+1nu+2“-nd><fu,1
yielding factorization
X< =Xepa XL, p=1,....d-1.
Combined with recursion
XETM+1 = UE(XZTM ® In,,),
this yields
X<F> = Xe, qURXD ) p=1,...,d—1.

Hence,
vec(X) = (X> 1 @ X<p—1) vec(U,,)

This formula allows us to pull out uth core!



Extension of ALSto TT

A TT decomposition is called p-orthogonal if

(UTUS =1, XD X<, =1, for v=1,...,0—1.
and

UR(URYT =1, XX, =1, for v=p+1,....d.

This implies that X, 11 ® X<,,_1 has orthonormal columns!
Consider eigenvalue problem

oAy = e (A AX))
)‘mln(A) = ?;l,é?) W
Optimizing for uth core ~
min (X, A(X)) — min (vecU,,, A, vecl,)

1
U, 20 (X, X) u,#0 (vecU,,vecl,)
with r,_1n,r, x r,_{n,r, matrix

A= (Xopr1 @ Xepo1) T AXo it @ X<puov)



Extension of ALSto TT

> U, is obtained as eigenvector belonging to smallest eigenvalue
of A,.

» Computation of A, for large d only feasible if A has low operator
TT ranks (and is in operator TT decomposition).

» One microstep of ALS optimizes U/, and prepares for next core,
by adjusting orthogonalization.

» One sweep of ALS consists of processing cores twice: once from
left to right and once from right to left.



Extension of ALSto TT

Input: X in right-orthogonal TT decomposition.
1: forp=1,2,...,d—1do
2:  Compute A, and replace core U, by an eigenvector belonging
to smallest eigenvalue of A,,.
Compute QR decomposition UL QR.
Set U} + Q.
Update Upr1 < Rot Uyis.
: end for
for p=d,d-— ,2do
Compute A, and replace core U,, by an eigenvector belonging
to smallest e|genvalue of A,.
9: Compute QR decomposition (UHT =QaR.
10:  Set UR «+ Q'.
11:  Update U,_1 < Roz U,_1.
12: end for

o N R W



Extension of ALSto TT

Remarks:

» “Small” matrix A, quickly gets large as TT ranks increase ~»
Need to use iterative methods (e.g., Lanczos, LOBPCG),
possibly combined with preconditioning [DK/Tobler'2011] for
solving eigenvalue problems.

» In ALS TT ranks of X need to be chosen a priori. Adaptive choice
of rank by merging neighbouring cores, optimizing for the merged
core, and split the optimized merged core ~» DMRG, modified
ALS. Cheaper: AMEn [White’2005, Dolgov/Savostyanov’'2013].

» Principles of ALS easily extend to other optimization problems,
e.g., linear systems [Holtz/Rohwedder/Schneider'’2012].



Numerical Experiments - Sine potential, d = 10

ALS
10° 145
e "X |-e-err_lambda
o | A-res
0 cxenr_iter 140
10
« 135
107t 130
x
B 125
107"
x
120
x
10715 L L L L 5
0 100 200 300 400 501)

Execution time [s]

Size = 12870 ~ 102'. Maximal TT rank 40. See
[Kressner/Steinlechner/Uschmajew’2014] for details.



Numerical Experiments - Henon-Heiles potential,
d =20

ALS
10° 260
x -©—-err_lambda
—A-res
0 oxenr_iter 150
10
140
107° | 130
120
107%
110
107"° : ‘ : :
0 500 1000 1500 2000 2580

Execution time [s]

Size = 12820 =~ 10*2. Maximal TT rank 40.



Numerical Experiments - 1/||£]|2 potential, d = 20

ALS
10° 130
-6-err_lambda
-A-res
0 oxenr_iter 129
10
120
10 f 115
110
107
15
-15
1 ‘ ‘
0 0 500 1000 1580

Execution time [s]

Size = 12820 ~ 10%2. Maximal TT rank 30.



Some ongoing work on low-rank approximation

» Dynamical low-rank approximation [Koch/Lubich’2007] with
applications, e.g., to deep learning [Schotthéfer et al.’2022] and
plasma physics [Einkemmer/Lubich’2018].

» Low-rank approximation ~» entry-wise constraints and operations
[Sarlos et al.’2023].

» Continuous limits and operator learning [Boullé/Townsend’2023].

» Representation/computation of high-dimensional pdfs through
tensors [Dolgov et al. 2020-]

» Randomized techniuges (stay tuned until Friday)



