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Large-scale optimization

• Many contemporary optimization problems are large-scale
• Found, e.g., in machine learning applications
• Billions of decision variables

• Algorithms based on linear system solves inapplicable

• Newton’s method
• Interior point methods
• Active set methods

• Need algorithms with lower per iteration cost

•
• Stochastic first-order methods
• Coordinate-wise first-order methods
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First-order splitting methods

• We consider first-order methods for finite-sum problems

minimize
x∈Rn

m∑
i=1

fi(x)

and we assume all fi are convex, but potentially nonsmooth

• A first-order method evaluates each subgradient ∂fi either

• explicitly (via direct evaluation, gradient if f differentiable) or
• implicitly (via proximal operator)

and linearly combines the results to form iterations
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Subgradients

• A subgradient of f : Rn → R ∪ {∞} at x ∈ Rn

• defines the slope s of an affine minorizer to f
• the affine minorizor coincides with f at x
• coincides (if exists) with gradient at differentiable points
• (s, −1) defines normal to epigraph of f

• The set of subgradients at x is called subdifferential at x (∂f(x))
• For convex f subgradient exists at least on interior of domain of f

(s1, −1) (s2, −1)
(s3, −1)

5



Subgradients

• A subgradient of f : Rn → R ∪ {∞} at x ∈ Rn

• defines the slope s of an affine minorizer to f
• the affine minorizor coincides with f at x
• coincides (if exists) with gradient at differentiable points
• (s, −1) defines normal to epigraph of f

• The set of subgradients at x is called subdifferential at x (∂f(x))

• For convex f subgradient exists at least on interior of domain of f

(s1, −1) (s2, −1)
(s3, −1)

5



Subgradients

• A subgradient of f : Rn → R ∪ {∞} at x ∈ Rn

• defines the slope s of an affine minorizer to f
• the affine minorizor coincides with f at x
• coincides (if exists) with gradient at differentiable points
• (s, −1) defines normal to epigraph of f

• The set of subgradients at x is called subdifferential at x (∂f(x))
• For convex f subgradient exists at least on interior of domain of f

(s1, −1) (s2, −1)
(s3, −1)

5



Proximal operator

• The proximal operator is defined as

proxγg(v) = argmin
x

(
g(x) + 1

2γ ∥x − v∥2
)

for some step size γ > 0

• Optimality condition (for proper lower-semicontinuous convex g)

γ−1(v − x) ∈ ∂g(x)

i.e., γ−1(v − x) is subgradient of g at x (implicit step)
• Projection is special case with g = ιC where

ιC(x) =
{

0 if x ∈ C

∞ else

i.e., proxγιC
= ΠC , where ΠC is orthorgonal projection onto C
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Problem formulation via subgradients

• The problem of solving

minimize
x∈Rn

m∑
i=1

fi(x)

is, given some mild constraint qualification, equivalent to

find x ∈ Rn such that 0 ∈
m∑

i=1
∂fi(x)

• An inclusion problem that is solved by first-order splitting methods
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Gradient method

• Solves

minimize
x∈Rn

f(x)

where f is differentiable
• Iteration given by

xk+1 = xk − γk∇f(xk)

where γk > 0, i.e., take step in negative gradient direction
• Explicit evaluation of (sub)gradient

9



Proximal gradient method

• Solves

minimize
x∈Rn

f1(x) + f2(x)

where f1 differentiable and f2 potentially nonsmooth
• Iterates gradient step followed by proximal operator evaluation:

xk+1 = proxγkf2(xk − γk∇f1(xk))

• Explicit and implicit evaluation

10



Momentum variations

• Nesterov acceleration variation of proximal gradient method

yk = xk + θk(xk − xk−1)
xk+1 = proxγkf2(yk − γk∇f1(yk))

where θk = k−1
k+2 (for instance)

• Polyak momentum variation of proximal gradient method

xk+1 = proxγkf2(xk − γk∇f1(xk)) + θk(xk − xk−1)

11



Douglas–Rachford splitting

• Solves

minimize
x∈Rn

f1(x) + f2(x)

where f1 and f2 can be nonsmooth
• Algorithm uses two implicit steps

xk = proxγkf1(zk)
yk = proxγkf2(2xk − zk)

zk+1 = zk + λk(yk − xk)

• With proper choice of f1 and f2 we get ADMM
• Momentum variations and multi-block extensions exist

12



Chambolle–Pock

• Solves

minimize
x∈Rn

f1(x) + f2(Lx)

where f1 and f2 can be nonsmooth
• Algorithm uses two implicit steps and explicit evaluation of L

xk+1 = proxτf1(xk − τL∗yk)
yk+1 = proxσf∗

2
(yk + σL(2xk − xk−1))

where f∗
2 is conjugate function of f2

• Does not entirely fit our framework, but with L = Id it does

13



Other first-order methods

• The Condat–Vu method
• Projective splitting
• The Davis–Yin method
• Minimal lifting methods by Ryu/Malitsky Tam
• Asymmetric forward–backward adjoint splitting
• Forward–backward–forward splitting
• Many more primal–dual methods
• Many momentum variations

14
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Our work

• Methodology for proving first-order algorithm convergence
• Focus on first-order methods for convex optimization that use

• proximal operator or gradient evaluations
• scalar multiplications and vector additions with fixed coefficients

16



Proving convergence
• Traditional way:

• Modern way with computer assisted PEP and IQC:

• End goal?:
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Towards end goal

• End goal:

• Have contributed to this with automatic Lyapunov analysis

18



Example: What we achieved while drinking coffee
• Chambolle–Pock (“with L = Id”): minimize

x∈H
(f1(x) + f2(x))

xk+1 = proxτf1(xk − τyk)
yk+1 = proxσf∗

2
(yk + τ2 (xk+1 + θ(xk+1 − xk)))

• Convergent parameter choices (primal-dual gap, f1 and f2 pcc)

0.5 1 1.50

2

4

6

8

τ = σ

θ

Traditional way

(Caveat: verified on a 0.01 × 0.01 grid of region)
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Chambolle–Pock linear convergence

• Tight contraction rate–both 0.05-strongly convex and 50-smooth:

0.5 1 1.5
0

2

4

6

8

τ = σ

θ

0.9

0.95

1

ρ

• Improved rate with larger τ = σ

20



Chambolle–Pock linear convergence

• Optimal convergence rate for different parameter restrictions1

Parameter restriction τ = σ θ ρ

All convergent 1.6 0.22 0.8812
Cvx+cvx convergent 1.5 0.35 0.8891
Traditional 0.99 1 0.9266
DR 1 1 0.9234

• Better rates outside traditional region

1 for points evaluated on our 0.01 × 0.01 grid
21



Setting – More formally

• Let Fσi,βi
be class of σi-strongly convex and βi-smooth functions

• Convex optimization problems

minimize
y∈H

m∑
i=1

fi(y)

where each fi ∈ Fσi,βi
with 0 ≤ σi < βi ≤ ∞

• Associated inclusion problem

find y ∈ H such that 0 ∈
m∑

i=1
∂fi(y)

where ∂fi are subdifferential operators
• Problem class Fσ,β: fi ∈ Fσi,βi and inclusion solvable

22



Main result statement

Given a first-order method for an inclusion problem class, we provide

• a necessary and sufficient condition for the existence of a
quadratic Lyapunov inequality (with a very general ansatz)

• a quadratic Lyapunov inequality if one exists

23



The necessary and sufficient condition

• Condition is feasibility of (small) semi-definite program
• Derived with inspiration from

• performance estimation (PEP) (Drori and Teboulle, Taylor et al.)
• integral quadratic constraints (IQC) (Lessard et al.)
• tight automated analysis framework (Taylor/Van Scoy/Lessard)
• Lyapunov analysis (Taylor/Bach)

• Based on specific algorithm representation for wide applicability

24
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Algorithm representation
• Algorithm representation on state space form1:

xk+1 = (A ⊗ Id)xk + (B ⊗ Id)uk

yk = (C ⊗ Id)xk + (D ⊗ Id)uk

uk ∈ ∂f(yk)
Fk = f(yk),

where different (A, B, C, D) give rise to different algorithms
• Product space notation for function and subdifferentials

f(y) =
(

f1

(
y(1)

)
, . . . , fm

(
y(m)

))
, ∂f(y) =

m∏
i=1

∂fi

(
y(i)
)

where
y =

(
y(1), . . . , y(m)

)
, u =

(
u(1), . . . , u(m)

)
, x =

(
x(1), . . . , x(n)

)
meaning u

(i)
k ∈ ∂fi(y(i)

k ) for all i ∈ J1, mK
• Linear dynamical system in feedback with subdifferentials

1 Model used in control literature, Lessard et al. 2016, and similar to model in Morin/Banert/Giselsson 26



Algorithms that fit framework

• All first-order methods with
• iteration-independent parameters
• exactly one subdifferential evaluation per iteration and function

fit the framework
• Many of the methods we have seen fit framework

27



Chambolle–Pock

• Algorithm (with L = Id):

xk+1 = proxτ1f1(xk − τyk),
yk+1 = proxτ2f∗

2
(yk + τ2 (xk+1 + θ(xk+1 − xk)))

• Algorithm in our state-space representation:

xk+1 =
([

1 −τ1
0 0

]
Id

)
xk +

([
−τ1 0

0 1

]
Id

)
uk,

yk =
([

1 −τ1
1 1

τ2
− τ1(1 + θ)

]
Id

)
xk +

([
−τ1 0

−τ1(1 + θ) − 1
τ2

]
Id

)
uk,

uk ∈ ∂f(yk),

• Algorithm parameters appear in (A, B, C, D)

28



Proximal gradient method with heavy-ball momentum

• Algorithm:

xk+1 = proxγf2(xk − γ∇f1(xk) + δ1(xk − xk−1)) + δ2(xk − xk−1)

• Algorithm in our state-space representation:

xk+1 =
([

1 + δ1 + δ2 −δ1 − δ2
1 0

]
Id

)
xk +

([
−γ −γ
0 0

]
Id

)
uk

yk =
([

1 0
1 + δ1 −δ1

]
Id

)
xk +

([
0 0

−γ −γ

]
Id

)
uk,

uk ∈ ∂f(yk),

• Algorithm parameters appear in (A, B, C, D)
• Same structure as previous algorithm, just new (A, B, C, D)

29



Algorithm fixed points

• Algorithm fixed points ξ⋆ = (x⋆, u⋆, y⋆, F⋆) satisfy

x⋆ = (A ⊗ Id)x⋆ + (B ⊗ Id)u⋆

y⋆ = (C ⊗ Id)x⋆ + (D ⊗ Id)u⋆

u⋆ ∈ ∂f(y⋆)
F⋆ = f(y⋆)

• Algorithm objective: find fixed point ξ⋆, extract solution from ξ⋆

30



Fixed-point encoding property

• We are only interested in algorithms (A, B, C, D) such that

finding a fixed point ⇐⇒ solving inclusion problem

• More specifically:
• from each solution, it should be possible to construct fixed point
• from each fixed point, it should be possible to extract solution

• Such algorithms have the fixed-point encoding property (FPEP)

31



Restrictions on (A, B, C, D)
• Let

N =
[

I
−1⊤

]
∈ Rm×(m−1)

• Result:

The algorithm has the fixed-point encoding property
⇐⇒

The matrices (A, B, C, D) satisfy

ran
[
BN 0
DN −1

]
⊆ ran

[
I − A
−C

]
null

[
I − A −B

]
⊆ null

[
N⊤C N⊤D

0 1⊤

]
,

(block row/column containing N⊤/N removed when m = 1)

• (A, B, C, D) of algorithms that “work” satisfy FPEP conditions
32
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Lyapunov analysis

• We use quadratic (P, p, T, t, ρ)-Lyapunov inequalities:
C1. V (ξ+, ξ⋆) ≤ ρV (ξ, ξ⋆) − R(ξ, ξ⋆)
C2. V (ξ, ξ⋆) ≥ Q(P, (x − x⋆, u, u⋆)) + p⊤(F − F⋆) ≥ 0
C3. R(ξ, ξ⋆) ≥ Q(T, (x − x⋆, u, u⋆)) + t⊤(F − F⋆) ≥ 0
where V, R quadratic and (P, p, T, t, ρ) decides convergence in:

• distance to solution
• function value suboptimality (if one function) or
• primal-dual gap (if more than one function)

depending on (P, p, T, t) linearly (ρ < 1) sublinearly (ρ = 1)
• User specifies (P, p, T, t, ρ) to decide on convergence property
• User provides algorithm on (A, B, C, D) form

34



Main result

Given:

• a first-order method on state-space representation form
• convergence deciding data (P, p, T, t) and ρ

We provide:

• necessary and sufficient condition for existence of
(P, p, T, t, ρ)-quadratic Lyapunov inequality via feasibility of SDP

• a quadratic Lyapunov inequality if one exists

35
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Using the methodology

We apply our methodology in two different ways:

B1. Find the smallest possible ρ ∈ [0, 1[ via bisection search
B2. Fix ρ = 1 and find range of algorithm parameters for which there

exists a (P, p, T, t, ρ)-Lyapunov inequality on pre-specified grid

37



Gradient method with heavy-ball momentum

• Algorithm

xk+1 = xk − γ∇f1(xk) + δ(xk − xk−1)

• Function suboptimality convergence region for f1 ∈ F0,1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 10
0.5

1
1.5

2
2.5

δ

γ

Our methodology
Ghadimi et al. 2015

• Larger parameter region with function suboptimality convergence
38



Proximal gradient method with heavy-ball momentum
• Algorithm

xk+1 = proxγf2(xk − γ∇f1(xk) + δ1(xk − xk−1)) + δ2(xk − xk−1)
reduces to grad heavy-ball method if δ1 = 0 or δ2 = 0

• Duality gap convergence region f1 ∈ F0,1 and f2 ∈ F0,∞

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 10
0.5

1
1.5

2
2.5

δ, δ1, or δ2

γ

Without prox
With prox, δ2 = 0
With prox, δ1 = 0

• Convergent parameter region smaller with prox
• Larger region if momentum inside prox

39



Chambolle–Pock
• Chambolle–Pock (“with L = Id”): minimize

x∈H
(f1(x) + f2(x))

xk+1 = proxτ1f1(xk − τyk)
yk+1 = proxτ2f∗

2
(yk + τ2 (xk+1 + θ(xk+1 − xk)))

• Convergent parameter choices (primal-dual gap, f1 and f2 pcc)

0.5 1 1.50

2

4

6

8

τ1 = τ2

θ

Traditional way
Our methodology

(Caveat: verified on a 0.01 × 0.01 grid of region) 40



Chambolle–Pock—Restricted Lyapunov

• Restrict Lyapunov search space to less general (common) ansats
• Convergent parameter choices (primal-dual gap, f1 and f2 pcc)

0.5 1 1.50

2

4

6

8

τ1 = τ2

θ

Restricted ansatz
Full methodology

• Restriction in Lyapunov ansatz gives traditional parameter region
41



Summary and future work

Summary

• Considered control inspired algorithm framework
• Provided iff conditions for framework to be useful in optimization
• Provided iff conditions for algorithm to admit Lyapunov analysis
• Showed larger convergent parameter ranges for two algorithms

Future work

• Handle iteration dependent parameters
• Handle several function evaluations per iteration
• Results are numerical, method for obtaining analytical results
• Not only analysis, but also design of algorithms

42



Thank you

arXiv:2302.06713

Related: The Chambolle–Pock method (with general L) converges weakly with θ > 1/2 and τσ∥L∥2 < 4(1 + 2θ)

arXiv:2309.03998
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Lyapunov analysis

• Let ξk = (xk, uk, yk, Fk) and ξ⋆ = (x⋆, u⋆, y⋆, F⋆)
• Many first-order methods analyzed using Lyapunov inequalities

V (ξk+1, ξ⋆) ≤ ρV (ξk, ξ⋆) − R(ξk, ξ⋆)

where ρ ∈ [0, 1] and
• V : S × S → R is a Lyapunov function
• R : S × S → R is a residual function

and S = Hn × Hm × Hm × Rm

44



Lyapunov and residual function ansatz

• We consider quadratic ansatzes of the functions V and R given by

V (ξ, ξ⋆) = Q(Q, (x − x⋆, u, u⋆)) + q⊤(F − F⋆),
R(ξ, ξ⋆) = Q(S, (x − x⋆, u, u⋆)) + s⊤(F − F⋆)

where Q, S ∈ Sn+2m, q, s ∈ Rm parameterize the functions and

Q(Q, (x − x⋆, u, u⋆)) = ⟨(x − x⋆, u, u⋆), Q(x − x⋆, u, u⋆)⟩

• These quadratic ansatzes are quite general

45



Lyapunov analysis conclusions

• Purpose of Lyapunov analysis is to draw convergence conclusion
• Will not know (Q, q, S, s) in advance ⇒ lower bound V and R

• Let P, T ∈ Sn+2m, p, t ∈ Rm and

V (ξ, ξ⋆) = Q(P, (x − x⋆, u, u⋆)) + p⊤(F − F⋆)
R(ξ, ξ⋆) = Q(T, (x − x⋆, u, u⋆)) + t⊤(F − F⋆)

• Control conclusion by enforcing nonnegative lower bounds

V (ξ, ξ⋆) ≥ V (ξ, ξ⋆) ≥ 0
R(ξ, ξ⋆) ≥ R(ξ, ξ⋆) ≥ 0

46



(P, p, T, t, ρ)-quadratic Lyapunov inequality

(P, p, T, t, ρ)-Lyapunov inequality for algorithm over Fσ,β:

C1. V (ξ+, ξ⋆) ≤ ρV (ξ, ξ⋆) − R(ξ, ξ⋆)
C2. V (ξ, ξ⋆) ≥ Q(P, (x − x⋆, u, u⋆)) + p⊤(F − F⋆) ≥ 0
C3. R(ξ, ξ⋆) ≥ Q(T, (x − x⋆, u, u⋆)) + t⊤(F − F⋆) ≥ 0

47



Convergence conclusions

• For ρ ∈ [0, 1[:

0 ≤ V (ξk, ξ⋆) ≤ V (ξk, ξ⋆) ≤ ρkV (ξ0, ξ⋆) → 0

i.e., lower bound converges ρ-linearly to 0
• For ρ = 1, a telescoping summation gives

0 ≤
∞∑

k=0
R(ξk, ξ⋆) ≤

∞∑
k=0

R(ξk, ξ⋆) ≤ V (ξ0, ξ⋆)

• The choice of P, T ∈ Sn+2m, p, t ∈ Rm decides conclusion

48



Some choices of (P, p, T, t)

• Suppose ρ ∈ [0, 1[ and let ei be ith basis vector and

(P, p, T, t) =
([

C D −D
]⊤

eie
⊤
i

[
C D −D

]
, 0, 0, 0

)
then V (ξk, ξ⋆) =

∥∥∥y
(i)
k − y⋆

∥∥∥2
≥ 0 ⇒ ρ-linear convergence

• Suppose ρ = 1 and m = 1 and let

(P, p, T, t) = (0, 0, 0, 1)

then R(ξk, ξ⋆) = f1(y(1)
k ) − f1(y⋆) ≥ 0 which gives

• function suboptimality convergence
• ergodic O(1/k) function suboptimality convergence

49



(P, p, T, t) for duality gap convergence

• Suppose ρ = 1 and m > 1 and let

(P, p, T, t) =
(

0, 0,

[
C D −D
0 0 I

]⊤ [ 0 − 1
2 I

− 1
2 I 0

] [
C D −D
0 0 I

]
, 1
)

then

R(ξk, ξ⋆) =
m∑

i=1

(
fi

(
y

(i)
k

)
− fi

(
y

(i)
⋆

)
−
〈

u
(i)
⋆ , y

(i)
k − y

(i)
⋆

〉)
= L(y, u⋆) − L(y⋆, u) ≥ 0

where L : Hm × Hm → R is a Lagrangian function giving
• duality gap convergence
• ergodic O(1/k) duality gap convergence

• Generalization to function value suboptimality to m > 1
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(P, p, T, t, ρ)-quadratic Lyapunov inequality

• (P, p, T, t, ρ)-Lyapunov inequality for algorithm over Fσ,β:
C1. V (ξ+, ξ⋆) ≤ ρV (ξ, ξ⋆) − R(ξ, ξ⋆)
C2. V (ξ, ξ⋆) ≥ Q(P, (x − x⋆, u, u⋆)) + p⊤(F − F⋆) ≥ 0
C3. R(ξ, ξ⋆) ≥ Q(T, (x − x⋆, u, u⋆)) + t⊤(F − F⋆) ≥ 0

• Conditions should hold for points reachable by algorithm:
• each ξ ∈ S that is algorithm-consistent for f
• each successor ξ+ ∈ S of ξ
• each fixed point ξ⋆ ∈ S
• each f = (f1, . . . , fm) ∈ Fσ,β

which adds complication compared to if ξ, ξ+, ξ⋆ ∈ S3
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Traditional way to find Lyapunov inequality

• Use inequalities for function class that algorithm solves
• Combine with algorithm updates
• Manipulate to arrive at Lyapunov inequality
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Main result

Given:

• a first-order method on state-space representation form
• convergence deciding data (P, p, T, t) and ρ

We provide:

• a necessary and sufficient condition for the existence of a
(P, p, T, t, ρ)-quadratic Lyapunov inequality

• a quadratic Lyapunov inequality (Q, q, S, s) if one exists
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Necessary and sufficient condition

There exists a Lyapunov inequality satisfying C1-C3
⇐⇒(1)

A particular SDP involving (Q, q, S, s) is feasible

(1) Assuming dimension independence and Slater condition

C1



λC1
(l,i,j) ≥ 0 for each l ∈ J1, mK and distinct i, j ∈ {ø, +, ⋆},

Σ⊤
ø (ρQ − S)Σø − Σ⊤

+QΣ+ +
m∑

l=1

∑
i,j∈{ø,+,⋆}

i̸=j

λC1
(l,i,j)M(l,i,j) ⪰ 0,

[
ρq − s

−q

]
+

m∑
l=1

∑
i,j∈{ø,+,⋆}

i̸=j

λC1
(l,i,j)a(l,i,j) = 0,

C2



λC2
(l,i,j) ≥ 0 for each l ∈ J1, mK and distinct i, j ∈ {ø, ⋆},

Σ⊤
ø (Q − P )Σø +

m∑
l=1

∑
i,j∈{ø,⋆}

i̸=j

λC2
(l,i,j)M(l,i,j) ⪰ 0,

[
q − p

0

]
+

m∑
l=1

∑
i,j∈{ø,⋆}

i̸=j

λC2
(l,i,j)a(l,i,j) = 0,

C3



λC3
(l,i,j) ≥ 0 for each l ∈ J1, mK and distinct i, j ∈ {ø, ⋆},

Σ⊤
ø (S − T )Σø +

m∑
l=1

∑
i,j∈{ø,⋆}

i̸=j

λC3
(l,i,j)M(l,i,j) ⪰ 0,

[
s − t

0

]
+

m∑
l=1

∑
i,j∈{ø,⋆}

i ̸=j

λC3
(l,i,j)a(l,i,j) = 0,
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Necessary and sufficient condition

There exists a Lyapunov inequality satisfying C1-C3
⇐⇒(1)

A particular SDP involving (Q, q, S, s) is feasible

(1) Assuming dimension independence and Slater condition

C1



λC1
(l,i,j) ≥ 0 for each l ∈ J1, mK and distinct i, j ∈ {ø, +, ⋆},

Σ⊤
ø (ρQ − S)Σø − Σ⊤

+QΣ+ +
m∑

l=1

∑
i,j∈{ø,+,⋆}

i̸=j

λC1
(l,i,j)M(l,i,j) ⪰ 0,

[
ρq − s

−q

]
+

m∑
l=1

∑
i,j∈{ø,+,⋆}

i ̸=j

λC1
(l,i,j)a(l,i,j) = 0,

C2



λC2
(l,i,j) ≥ 0 for each l ∈ J1, mK and distinct i, j ∈ {ø, ⋆},

Σ⊤
ø (Q − P )Σø +

m∑
l=1

∑
i,j∈{ø,⋆}

i̸=j

λC2
(l,i,j)M(l,i,j) ⪰ 0,

[
q − p

0

]
+

m∑
l=1

∑
i,j∈{ø,⋆}

i̸=j

λC2
(l,i,j)a(l,i,j) = 0,

C3



λC3
(l,i,j) ≥ 0 for each l ∈ J1, mK and distinct i, j ∈ {ø, ⋆},

Σ⊤
ø (S − T )Σø +

m∑
l=1

∑
i,j∈{ø,⋆}

i̸=j

λC3
(l,i,j)M(l,i,j) ⪰ 0,

[
s − t

0

]
+

m∑
l=1

∑
i,j∈{ø,⋆}

i ̸=j

λC3
(l,i,j)a(l,i,j) = 0,
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How to arrive at condition?
• C1-C3 equivalent to that optimal value of

maximize Φ(ξ, ξ+, ξ⋆)

subject to x+ = (A ⊗ Id)x + (B ⊗ Id)u,

y = (C ⊗ Id)x + (D ⊗ Id)u,

u ∈ ∂f(y),
F = f(y),
y+ = (C ⊗ Id)x+ + (D ⊗ Id)u+,

u+ ∈ ∂f(y+),
F+ = f(y+),
x⋆ = (A ⊗ Id)x⋆ + (B ⊗ Id)u⋆,

y⋆ = (C ⊗ Id)x⋆ + (D ⊗ Id)u⋆,

u⋆ ∈ ∂f(y⋆),
F⋆ = f(y⋆),
f ∈ Fσ,β,

(PEP)

is non-positive with different quadratic Φ for C1-C3
• Solved using PEP ideas 55


