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® \We consider first-order methods for finite-sum problems
m
minimize (T
wipie 3 10
1=

and we assume all f; are convex, but potentially nonsmooth
® A first-order method evaluates each subgradient Jf; either
® explicitly (via direct evaluation, gradient if f differentiable) or
® implicitly (via proximal operator)
and linearly combines the results to form iterations
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Subgradients

® A subgradient of f : R” - RU {oo} at z € R"
® defines the slope s of an affine minorizer to f
the affine minorizor coincides with f at x
coincides (if exists) with gradient at differentiable points
(s, —1) defines normal to epigraph of f

® The set of subgradients at z is called subdifferential at = (0f(z))
® For convex f subgradient exists at least on interior of domain of f

(s1,—1) (s2,—1)
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Proximal operator

® The proximal operator is defined as
prox. ,(v) = argmin (g(m) + %Hw - U||2)
T

for some step size v > 0

® Optimality condition (for proper lower-semicontinuous convex g)
v v — 1) € dg(x)

i.e., 7" 1(v — ) is subgradient of g at = (implicit step)
® Projection is special case with g = 1o where

Lc(x):{o ifxed

oo else

i.e., prox,, = Ilc, where Il is orthorgonal projection onto



Problem formulation via subgradients

® The problem of solving
m
migé&ize ; fi(z)
is, given some mild constraint qualification, equivalent to

find z € R" such that 0 € Y 9f;(x)

i=1



Problem formulation via subgradients

® The problem of solving
m
migé&ize ; fi(z)
is, given some mild constraint qualification, equivalent to

find z € R" such that 0 € Y 9f;(x)

i=1

® An inclusion problem that is solved by first-order splitting methods
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Gradient method

® Solves
minimize f(z
nimize f(z)
where f is differentiable

® |teration given by

Try1 = Tp — VRV f(Tr)

where v > 0, i.e., take step in negative gradient direction

® Explicit evaluation of (sub)gradient



Proximal gradient method

® Solves
mini]%lize fi(x) + fa(x)
zeR™

where f; differentiable and fy potentially nonsmooth

® |terates gradient step followed by proximal operator evaluation:

Tt1 = Proxy, r (zr — WV f1(zr))

® Explicit and implicit evaluation

10



Momentum variations

® Nesterov acceleration variation of proximal gradient method

Yp = T + Op(xp — Tp—1)

Try1 = prox., ¢ (yx — 1V f1(yx))

k—1
k42

® Polyak momentum variation of proximal gradient method

where 0, = (for instance)

Tpy1 = prox., r, (zx — WV fi(ze)) + Ok (T — 25-1)

11



Douglas—Rachford splitting

Solves
minimize f1(x) + fa(x)
rER®

where fi and fs can be nonsmooth

Algorithm uses two implicit steps

Tk = prox,, s, (2x)
Yr = prox., r, (2w — z)
Zit1 = 2k + MYk — o)

With proper choice of f; and f; we get ADMM

Momentum variations and multi-block extensions exist

12



Chambolle—Pock

® Solves
minigize fi(z) + fo(Lx)
SRR

where f1 and f; can be nonsmooth

® Algorithm uses two implicit steps and explicit evaluation of L

Thy1 = Prox, s (zx — 7L yx)
Ykt1 = ProXg s (Yr + o L(2xp — xp-1))

where f3 is conjugate function of f,
® Does not entirely fit our framework, but with L = Id it does

13



Other first-order methods

The Condat—Vu method

Projective splitting

The Davis—Yin method

Minimal lifting methods by Ryu/Malitsky Tam
Asymmetric forward—backward adjoint splitting
Forward—backward—forward splitting

Many more primal—dual methods

Many momentum variations

14
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Our work

® Methodology for proving first-order algorithm convergence
® Focus on first-order methods for convex optimization that use

® proximal operator or gradient evaluations
® scalar multiplications and vector additions with fixed coefficients
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® Traditional way:

Proving convergence

36:¢ A= nr

3#? ’9 m 944

'2x'z ?7 8 9 5xs

—pa

17



® Traditional way:

Proving convergence

6., A=Tr?
> D qt*
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Towards end goal

® End goal:

® Have contributed to this with automatic Lyapunov analysis
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Example: What we achieved while drinking coffee
® Chambolle—Pock (“with L =1d"): minie%ize(fl(x) + fa(2))

Thi1 = ProxX, p (Tx — TYk)

Y1 = ProX, g (Y + 72 (T + 0(Thi1 — 1))
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Thi1 = ProxX, p (Tx — TYk)

Yk+1 = ProXg o (Y + 72 (1 + 0(Th i1 — 7))

® Convergent parameter choices (primal-dual gap, f1 and f2 pcc)

8 T

’ —— Traditional way ‘

0 ! !
0.5 1 1.5
T=o0

(Caveat: verified on a 0.01 x 0.01 grid of region)
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Yk+1 = ProXg o (Y + 72 (1 + 0(Th i1 — 7))

® Convergent parameter choices (primal-dual gap, f1 and f2 pcc)

; —— Traditional way

6 | Our methodology
> 4 N

9 i

%.5 1 115

T=o0
(Caveat: verified on a 0.01 x 0.01 grid of region)
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Chambolle—Pock linear convergence

® Tight contraction rate-both 0.05-strongly convex and 50-smooth:

8

d

0L !

0.5 1
T=0

® Improved rate with larger 7 = o

1.5

1

0.95

0.9
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Chambolle—Pock linear convergence

e Optimal convergence rate for different parameter restrictions!

Parameter restriction T =0 (7] P

All convergent 1.6 0.22 0.8812
Cvx+cvx convergent 15 0.35 0.8891
Traditional 0.99 1 0.9266
DR 1 1 0.9234

® Better rates outside traditional region

L for points evaluated on our 0.01 x 0.01 grid

21



Setting — More formally

Let F5, g, be class of g;-strongly convex and 3;-smooth functions

Convex optimization problems
m
minimize i
nim Zl fily)
=

where each f; € F, 3, with 0 <0y < 3; < 00
Associated inclusion problem

find y € H such that 0 € Zafl(y)
i=1

where Of; are subdifferential operators
Problem class Fo g: fi € F5, 3, and inclusion solvable

22



Main result statement

Given a first-order method for an inclusion problem class, we provide

® a necessary and sufficient condition for the existence of a
quadratic Lyapunov inequality (with a very general ansatz)

® a quadratic Lyapunov inequality if one exists

23



The necessary and sufficient condition

e Condition is feasibility of (small) semi-definite program
® Derived with inspiration from

® performance estimation (PEP) (Drori and Teboulle, Taylor et al.)
® integral quadratic constraints (IQC) (Lessard et al.)

® tight automated analysis framework (Taylor/Van Scoy/Lessard)
® Lyapunov analysis (Taylor/Bach)

® Based on specific algorithm representation for wide applicability

24
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Algorithm representation

® Algorithm representation on state space form?:
i1 = (A 1)z, + (B @ Id)uy
yr = (C @ 1d)zy + (D @ Id)uy
uy, € 0f(yk)
Fi = f(yr),

where different (A4, B, C, D) give rise to different algorithms
® Product space notation for function and subdifferentials

Fo) = (A (V) du(v™)), 0fw) =[] 05 (s?)

where
y = (y(”y...,y(m)) u = (u“),...,u(m)), - ($(1)7...7m("))
meanin Q) of; (1) ;
gu,’ € 0fi(y,’) forall i € [1,m]
® Linear dynamical system in feedback with subdifferentials

1 Model used in control literature, Lessard et al. 2016, and similar to model in Morin/Banert/Giselsson

26



Algorithms that fit framework

® All first-order methods with

® iteration-independent parameters
® exactly one subdifferential evaluation per iteration and function

fit the framework

® Many of the methods we have seen fit framework

27



Chambolle—Pock

® Algorithm (with L = Id):

Try1 = Prox,, ¢ (Th — TYk),

Yk+1 = ProXe, px (Y + 72 (Tpg1 + 0(Tk41 — 7))

® Algorithm in our state-space representation:

B 1 —n -1 0
wn=(lo 7] )= ([0 1,

o 1 —T1 —T1 0
ve ({1 % -7l +9)]1d> o ([_ﬁ(l +0) _% 1d e

® Algorithm parameters appear in (4, B,C, D)

28



Proximal gradient method with heavy-ball momentum

Algorithm:

Tpt1 = Prox, g, (zx — YV fi(xr) + 61 (2 — 2x—1)) + d2(2k — Th—1)

Algorithm in our state-space representation:

1+ 61+ 62 —51—52] ) ([—7 —7} >
Tpt1 = T + Uk
i ({ 1 0 1d 0 0]y
_ 1 0 A 0 O] )u
Y = 1406, -0, . k " ks

ui € df(yr),

Algorithm parameters appear in (A, B,C, D)

® Same structure as previous algorithm, just new (A, B, C, D)

29



Algorithm fixed points

o Algorithm fixed points &, = (X, Uy, Yx, Fy) satisfy
z, = (A Id)z, + (B @ Id)u,
Yo = (C @ 1d)zy + (D @ Id)uy
u, € 0f(y)
F. = f(y.)

® Algorithm objective: find fixed point &,, extract solution from &,

30



Fixed-point encoding property

® We are only interested in algorithms (A, B, C, D) such that
finding a fixed point = solving inclusion problem

® More specifically:

® from each solution, it should be possible to construct fixed point
® from each fixed point, it should be possible to extract solution

® Such algorithms have the fixed-point encoding property (FPEP)

31



Restrictions on (A, B,C, D)
® |let
N = |:_§_T:| c Rmx(m,—l)

® Result:

The algorithm has the fixed-point encoding property
<
The matrices (A, B, C, D) satisfy

ran {BN 0 } Cran {I B A}

DN -1 -C
T T
nul [I— A —B] Cnull [NOC Nl—rD} ,

(block row/column containing N /N removed when m = 1)

® (A, B,C, D) of algorithms that “work" satisfy FPEP conditions

32
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Lyapunov analysis

® We use quadratic (P, p,T,t, p)-Lyapunov inequalities:
Cl. V(€+7£*) S pV(E?é*) - R(EaE*)
C2 V(ﬁ?ﬁ*) 2 Q(P7 (w_w*7u7u*))+pT(F_F*) ZO
C3 R(&a&*) 2 Q(Tv (m_m*vu,u*))+tT(F_F*) 20

where V, R quadratic and (P, p, T, t, p) decides convergence in:

® distance to solution
® function value suboptimality (if one function) or
® primal-dual gap (if more than one function)

depending on (P,p, T, t) linearly (p < 1) sublinearly (p = 1)
® User specifies (P, p,T,t, p) to decide on convergence property
® User provides algorithm on (A, B, C, D) form

34



Main result

Given:

® 3 first-order method on state-space representation form
® convergence deciding data (P,p,T,t) and p

We provide:

® necessary and sufficient condition for existence of
(P,p,T,t,p)-quadratic Lyapunov inequality via feasibility of SDP

® a quadratic Lyapunov inequality if one exists

35
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Using the methodology

We apply our methodology in two different ways:

B1. Find the smallest possible p € [0, 1] via bisection search

B2. Fix p =1 and find range of algorithm parameters for which there
exists a (P, p, T\, t, p)-Lyapunov inequality on pre-specified grid

37



Gradient method with heavy-ball momentum

® Algorithm
Tp1 = T — YV f1(wg) + (2 — TR-1)

® Function suboptimality convergence region for fi; € Fo 1
L T T T T

2.5 || === Our methodology
| | === Ghadimi et al. 2015

O—1 -08-06-04-02 0 02 04 06 08 1
]

® | arger parameter region with function suboptimality convergence
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Proximal gradient method with heavy-ball momentum
® Algorithm

Try1 = prox. g, (2 — YV f1(2r) + 61(2g — x—1)) + do(Tk — Tx—1)

reduces to grad heavy-ball method if 1 =0 or §o =0
® Duality gap convergence region fi € Fo1 and fo € Fp oo
‘ : ‘ , : ‘ ‘ ‘

2.5 || === Without prox
== \With prox, o =0
= With prox, §; =0

0—1 -0.8-06-04-02 0 02 04 06 08 1

(5, 61, or 62
® Convergent parameter region smaller with prox
® | arger region if momentum inside prox
39



Chambolle—Pock
® Chambolle—Pock (“with L =1Id"): miniG%ize(fl(x) + fa(z))
Thy1 = ProxX, r (T — TYk)

Yk+1 = ProXe, ¢ (Y + 72 (Tpt1 + 0(@ps1 — 21)))

® Convergent parameter choices (primal-dual gap, f1 and f> pcc)

—— Traditional way
=== Qur methodology

0
0.5 1 1.5
T1 = T2
(Caveat: verified on a 0.01 x 0.01 grid of region)
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Chambolle-Pock—Restricted Lyapunov

® Restrict Lyapunov search space to less general (common) ansats

® Convergent parameter choices (primal-dual gap, f1 and f2 pcc)

s —— Restricted ansatz

6 | Full methodology
> 4 ,

2 |

%.5 1 1[5

T = T2

® Restriction in Lyapunov ansatz gives traditional parameter region



Summary and future work

Summary

® Considered control inspired algorithm framework
® Provided iff conditions for framework to be useful in optimization
® Provided iff conditions for algorithm to admit Lyapunov analysis

® Showed larger convergent parameter ranges for two algorithms
Future work

® Handle iteration dependent parameters
® Handle several function evaluations per iteration
® Results are numerical, method for obtaining analytical results

® Not only analysis, but also design of algorithms

42



Thank you

arXiv:2302.06713

Related: The Chambolle-Pock method (with general L) converges weakly with 6 > 1/2 and T(THLHQ < 4(1 + 26)

arXiv:2309.03998
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Lyapunov analysis

® Let £k = (wk‘aukvyka Fk) and 6* = (IB*,U*, (7 F*)
® Many first-order methods analyzed using Lyapunov inequalities

V(&r+1:€5) < pV (&rs &) — R(&k, €4)

where p € [0,1] and
® V:S8 xS — Ris a Lyapunov function
® R:S xS — Ris a residual function

and S =H" x H™ x H™ x R™

44



Lyapunov and residual function ansatz

® We consider quadratic ansatzes of the functions V' and R given by

V(gag*) = Q(Qa (m = Ly uau*)) + qT(F - F*)v
R(§.€.) = Q(S, (& — mv,u,uw,)) + 5 (F — F.)

where , S € S"T2™, ¢, s € R™ parameterize the functions and
Q(Q7 (w — Ty, U, u*)) - <(w — Ty, U, u*)7 Q(QE — L, ’U,,’U,*)>

® These quadratic ansatzes are quite general

45



Lyapunov analysis conclusions

Purpose of Lyapunov analysis is to draw convergence conclusion
Will not know (@, g, S, s) in advance = lower bound V' and R
Let P,T € S"*2™ p,t € R™ and

K(ﬁa&*) = Q(Pv (5'2 - w*7u7u*>) +pT(F - F*)
E(éaé*) = Q(T7 (:E - w*’uvu*)) + tT(F - F*)

Control conclusion by enforcing nonnegative lower bounds

V(£ &) > V(€ &) =0
R(§ &) = R(£:€4) 2 0

46



(P,p,T,t, p)-quadratic Lyapunov inequality

(P,p,T,t, p)-Lyapunov inequality for algorithm over F g:
C1. V(€+a€*) S pv(€7£*) - R(€7£*>

c2. V(gag*) > Q(P’ (:B - m*a“ﬁ“’*)) +pT(F - F*) > 0
C3. R(&,&) > Q(T, (x — x4, u,uy)) +t (F—F,) >0

47



Convergence conclusions

® For pe[0,1]:

0 < V(& &) < V(& &) < p"V(€n, &) — 0

e., lower bound converges p-linearly to 0

® For p =1, a telescoping summation gives

ZE €k7€* < Z €k7€* = (SOaS*)
k=0 k=0

® The choice of P, T € S"t2™ p t € R™ decides conclusion

48



Some choices of (P,p,T,t)

® Suppose p € [0,1] and let e; be ith basis vector and

(P,p,T,t):([C D -D]"eel [C D —D],O,O,O)

2
> 0 = p-linear convergence

then V (&, &x) = Hy;(f) — Yu
® Suppose p=1and m =1 and let

(P7p7 T7 t) = (07 07 07 ]‘)

then R(&k, &) = fl(y,il)) — f1(yx) = 0 which gives

® function suboptimality convergence
® ergodic O(1/k) function suboptimality convergence

49



(P,p,T,t) for duality gap convergence

® Suppose p =1 and m > 1 and let

T
¢ D -D 0 -—iIl[c D -D
(PapaTvt) = (ana |:0 0 T :| |:_ 2 :| |:

o0 ]lo o 1
then
L O R )
i=1

= [’(y7u*) - ‘C(y*7u) > 0

where £ : H™ x H™ — R is a Lagrangian function giving
® duality gap convergence
® ergodic O(1/k) duality gap convergence

® Generalization to function value suboptimality to m > 1

50



(P,p,T,t, p)-quadratic Lyapunov inequality

® (P,p,T,t,p)-Lyapunov inequality for algorithm over F g:
C1. V(€+7£*) S pV(E?&*) - R(£7£*)
C2. V(£,£) > O(P,(x — wuyuyu)) +p  (F— F.) >0
cs. R(sas*) 2 Q(Ta (:13 — Tk, U, u*)) + tT(F - F*) 2 0
® Conditions should hold for points reachable by algorithm:
® each £ € S that is algorithm-consistent for f
® each successor £ € S of &
® each fixed point &, € S
® cach f=(f1,...,fm) € Fop
which adds complication compared to if £,£,, &, € 83

51



Traditional way to find Lyapunov inequality

® Use inequalities for function class that algorithm solves
® Combine with algorithm updates

® Manipulate to arrive at Lyapunov inequality

52



Main result

Given:

® a first-order method on state-space representation form

® convergence deciding data (P,p,T,t) and p
We provide:

® a necessary and sufficient condition for the existence of a
(P, p,T,t, p)-quadratic Lyapunov inequality
® a quadratic Lyapunov inequality (Q, g, S, s) if one exists

53



Necessary and sufficient condition

There exists a Lyapunov inequality satisfying C1-C3
—
A particular SDP involving (Q, ¢, S, s) is feasible

(1) Assuming dimension independence and Slater condition



Necessary and sufficient condition

There exists a Lyapunov inequality satisfying C1-C3
)

A particular SDP involving (Q, ¢, S, s) is feasible

A(,,J) >0 for each I € [1,m] and distinct i, j € {0, +,},
m

SI(pQ—-8)% —2IQS  + > > AGLMuay) =0,
1 I=1ije{o,++}
. i#]

Pqg—s c
P X e =0
I=lije{o,+.+}
i)

/\8?1,7) > 0 for each [ € [1,m] and distinct i, j € {0, },
Q=PI+ 30 Ay Maig =0,
2 =1 L,yi‘;.f}

.
q-pr C:
3]+ X e -0,
I=1ije{o.x}
i#j

/\((ZS, ;) = 0 for each I € [1,m] and distinct i, j € {0, x},

.
SIE-TIZ Y Y AT Mo =0,

3 1=thicion
0]+ 3 e o
= 17]€{mx)

(1) Assuming dimension independence and Slater condition



How to arrive at condition?

® (C1-C3 equivalent to that optimal value of

maximize

subject to

(P(éa £+7 E*)

zy = (A®Id)z + (B®Id)u,
y=(C®Id)z+ (DeIld)u,

u € df(y),

F = f(y),

y+ = (Cold)zy + (D®Id)uy,
uy € 0f(y), (PEP)
Fy = f(y4),

z, = (A Id)z. + (B ®I1d)u.,
Y = (CeId)z, + (D ® Id)u.,
u € Of(yx),

F, = f(yx),

feFos

is non-positive with different quadratic ® for C1-C3
® Solved using PEP ideas
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