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Matrix manifolds

Riemannian Manifolds

Manifolds: Curved ‘spaces’ that locally look like the flat Rn.

coordinate charts around every point

smooth transition between overlapping coordinate charts
→ foundation for calculus on manifolds ,

Riemannian: tangent spaces with a metric that changes
smoothly with the manifold location

in general: no vector space structure /
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Matrix manifolds

Riemannian Manifolds

Tangent spaces: local linearization of a manifold

tangent vectors at p ∈M: velocity vectors of curves passing
through p (Abstract setting: derivations, i.e., differential operators that

induce directional derivatives)

Option for constructing charts: one-to-one mappings between
local manifold domain and tangent space domain
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Matrix manifolds

Matrix Manifolds

No generally accepted formal definition (that I am aware of).

Informally: Sets of matrices (or equivalence classes of matrices),
that share certain characterizing properties, which features a
Riemannian manifold structure.
Key idea: ”points” = manifold locations represented by matrices

Examples:

Invertible matrices GL(n),SPD(n)

Matrix Lie groups, i.e., closed subgroups of GL(n):
O(n), SO(n),SL(n),Sp(n), . . .,

Quotients of matrix Lie groups: Stiefel, Grassmann, . . .

Textbooks: [Absil et al., 2008], [Sato, 2021], [Boumal, 2023], . . .
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Matrix manifolds

Numerical challenges

‘Adding or subtracting two images of an automobile does not
result in a valid image of an automobile.’
[Srivastava and Turaga, 2015, p. 2].

For matrix people:
‘Adding or subtracting two orthogonal matrices does not result in
an orthogonal matrix.’
Similar for: eigenface spaces, computer tomography scans, covariance

matrices, rotations in the Euclidean space, reduced-order subspaces, . . .

Shortest paths? Nearest neighbors? Barycenters?
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Quotient spaces

Quotients of Lie groups

Definition (Lie groups)

A Lie group G is a differentiable manifold that at the same time
forms an algebraic group such that the two group operations

G × G → G , (g1, g2) 7→ g1g2 “group multiplication”

G → G , g 7→ g−1 “group inversion”

are differentiable.
A matrix Lie group matrix Lie group is a subgroup G ≤ GL(n) of
the general linear group that is closed relative to GL(n).
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Quotient spaces

Definition (Quotients of Lie groups by closed subgroups,
[Lee, 2012] §21)

Let G be a Lie group and H ≤ G be a Lie subgroup.

(i) For g ∈ G , a subset of G of the form

gH = {gh| h ∈ H}

is called a left coset of H.

(ii) The set of left cosets is called the left coset space of G
modulo H, in symbols G/H.

Theorem (cf. [Lee, 2012], Thm 21.17)

The left coset space G/H inherits a manifold structure such that
the quotient map (the canonical projection) π : G → G/H is a
smooth submersion.
Dimension: dimG/H = dimG − dimH.
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Quotient spaces

Quotient spaces: Why do we care?

For a smooth submersion π : G → G/H, we can split the
tangent space at p ∈ G into

TpG = ker(dπp)⊕ ker(dπp)
⊥ =: Vp ⊕Hp.

(Forming the orthogonal complement is with respect to a selected

Riemannian metric.)

Horizontal space ”=” tangent space of the quotient:

Hp
∼= Tπ(p)G/H.

Geodesics that are horizontal in the total space G are
mapped to geodesics in the quotient G/H under π.

In practical calculations, we can work with horizontal lifts.
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Quotient spaces

Figure 1: Various horizontal spaces at different points on the fibre. It
holds dπp(v̄ +Hp) = dπp(Hp) for any v̄ ∈ Vp.
Each horizontal space may be used as an explicit representation of the
tangent space of the quotient manifold.
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Quotient spaces

Paradigm:

know your geodesics in the total space

check that geodesics that start horizontal, stay horizontal

→ you have found your geodesics in the quotient space. ,
No solving of ODEs required!

Successfully applied

to obtain geodesics on Stiefel- and Grassmann manifolds
[Edelman et al., 1998]

to obtain geodesics on symplectic Stiefel- and Grassmann
manifolds [Bendokat and Z., 2021]
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Quotient spaces

Example of a quotient structure: Symp. group, Symp.
Stiefel, Symp. Grassmann

Sp(2n,R) ⊂ R2n×2n

M

M̃

π
π

SpSt(2n, 2k) ⊂ R2n×2k

U
Ũ

ρ

P

SpGr(2n, 2k) ⊂ R2n×2n

Graphic by Thomas Bendokat, taken from [Bendokat and Z., 2021]
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Geodesics

Geodesics

intuitively: shortest connections, Riemannian counterparts to
straight lines

more precisely: stationary points of length functional →
candidates for extrema

characterized by zero covariant acceleration

Basis of Riemannian computing: replace p + tv with cp,v (t).
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Geodesics

Geodesic equation(s)

(M, g) Riemannian manifold with metric g = (gp(·, ·))p∈M.
Geodesic c : [a, b]→ (M, g) characterized by zero covariant
derivative → ODE

Dċ
dt (t) = 0 ∀t ∈ [a, b].

in local coordinates (Uφ, φ), γ := φ ◦ c |c−1(Uφ):

γ̈k(t)+
∑

i ,j

γ̇i (t)γ̇j(t)
(
Γkij ◦ φ−1

)
(γ(t)) = 0 ∀k = 1, . . . , n.

Christoffel symbols: Γkij : Uφ → R, defined by ∇∂i
∂j =

∑
k Γ

k
ij∂k

in vector notation, using Christoffel tensor Γ

γ̈ + Γγ(t)(γ̇, γ̇) = 0. [Edelman et al., 1998]
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Geodesics

Riemannian normal coordinates

Definition (Riemannian Exponential)

(M, g) Riemannian manifold, T e
pM := {v ∈ TpM| 1 ∈ Iv}

Riemannian exponential map at p ∈M:
Expp : T e

pM→M, v 7→ Expp(v) := cv (1).

+M : Expp(v) = q ≈ ”p + v = q” | −M : Logp(q) = v ≈ ”q − p = v”

Expp is a local diffeo.

Logp = (Expp)
−1 is a

coordinate chart.
Riemannian normal
coordinates.

The manifold ‘plus’ and

‘minus’. (R. Bergmann)
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Geodesics

Riemannian normal coordinates

Fact: No isometries between flat and curved spaces possible.
(→ no map of earth that preserves lengths and angles.)
But for normal coordinates:

lengths of geodesic rays are preserved

geodesic sphere and geodesic rays intersect at right angle,

Gauß Lemma!
Illustration taken from [do Carmo, 1992, p. 69].
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Geodesics

Retractions

Retractions: [Absil et al., 2008]

Maps ”tangent space → manifold” with derivative Id at 0.

⇒ 1st-order approximations to geodesics/Riemannian
exponential, locally invertible
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Geodesics

Retractions

Retractions: [Absil et al., 2008]

Maps ”tangent space → manifold” with derivative Id at 0.

⇒ 1st-order approximations to geodesics/Riemannian
exponential, locally invertible

Well-suited for optimization: Cheaper to evaluate. Do not compro-
mise convergence results

taken from [Boumal, 2023, Fig. 3.1]
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Geodesics

Retractions

Retractions: [Absil et al., 2008]

Maps ”tangent space → manifold” with derivative Id at 0.

⇒ 1st-order approximations to geodesics/Riemannian
exponential, locally invertible

Potential additional source of errors/geometry distortion.
Example: Stiefel data interpolation with polar factor retraction.

Red: coordinate charts based

on polar factor retraction: RBF

on tangent space. Blue:

Riemannian normal coordinates:

RBF on tangent space
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Geodesics

Retractions

Retractions: [Absil et al., 2008]

Maps ”tangent space → manifold” with derivative Id at 0.

⇒ 1st-order approximations to geodesics/Riemannian
exponential, locally invertible

Potential additional source of errors/geometry distortion.
Example: Stiefel data interpolation with polar factor retraction.

Red: coordinate charts based

on polar factor retraction:

piecewise geodesic and RBF on

tangent space. Black:

Riemannian normal coordinates:

piecewise geodesic and RBF on

tangent space
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Geodesics

Retractions

Retractions: [Absil et al., 2008]

Maps ”tangent space → manifold” with derivative Id at 0.

⇒ 1st-order approximations to geodesics/Riemannian
exponential, locally invertible

Use of retractions can be a bare necessity!
Geodesics on matrix manifolds often feature the matrix exponential.
⇒ Unstable for non-normal matrices.
Severe issue for Symplectic Stiefel geodesics [Bendokat and Z., 2021].
Remedy: Use, e.g., Cayley-trafo for retractions.
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The Christoffel symbols: Covariant derivatives and Riemannian Hessian

Outline

Subsection 2

The Christoffel symbols: Covariant derivatives and
Riemannian Hessian
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The Christoffel symbols: Covariant derivatives and Riemannian Hessian

Covariant derivatives

taken from [Lee, 2012, Fig. 4.7]

Let t 7→ X (t) be a vector field along a curve. Then

DX

dt
(t) = Ẋ (t) + Γγ(t)(X (t), γ̇(t)).

Covariant derivatives yield

parallel vector fields → parallel vector transport

Riemannian Hessian → second-order optimization schemes
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The Christoffel symbols: Covariant derivatives and Riemannian Hessian

General recipe for computing the Hesse (1, 1)-form.

derive the geodesic ODE γ̈ + (. . .) = 0. The terms in red
depend on γ(t) and γ̇(t) and constitute the Christoffel tensor
Γγ(t)(γ̇(t), γ̇(t))) = (. . .).

Find the general form via polarization
Γ(v ,w) = 1

4 (Γ(v + w , v + w)− Γ(v − w , v − w)) .

Compute the Hessian of a scalar function f via the covariant
derivative of the gradient field along a geodesic t 7→ γ(t) with
starting velocity γ(0) = p, γ̇(0) = v :

Hessf (p)[v ] = (∇vgradf )(p) =
D

dt

∣∣
t=0

gradf (γ(t))

=
d

dt

∣∣
t=0

gradf (γ(t)) + Γp(gradf (p), v).

Ongoing: applied for constructing a Riemann trust region method
on SpSpt(2n, 2k) by Rasmus Jensen.



Matrix manifolds, Lie groups, quotients Geodesics matter Optimization, interpolation, MOR Summary & Conclusion

The Christoffel symbols: Covariant derivatives and Riemannian Hessian

General recipe for computing the Hesse (1, 1)-form.

derive the geodesic ODE γ̈ + (. . .) = 0. The terms in red
depend on γ(t) and γ̇(t) and constitute the Christoffel tensor
Γγ(t)(γ̇(t), γ̇(t))) = (. . .).

Find the general form via polarization
Γ(v ,w) = 1

4 (Γ(v + w , v + w)− Γ(v − w , v − w)) .

Compute the Hessian of a scalar function f via the covariant
derivative of the gradient field along a geodesic t 7→ γ(t) with
starting velocity γ(0) = p, γ̇(0) = v :

Hessf (p)[v ] = (∇vgradf )(p) =
D

dt

∣∣
t=0

gradf (γ(t))

=
d

dt

∣∣
t=0

gradf (γ(t)) + Γp(gradf (p), v).

Ongoing: applied for constructing a Riemann trust region method
on SpSpt(2n, 2k) by Rasmus Jensen.



Matrix manifolds, Lie groups, quotients Geodesics matter Optimization, interpolation, MOR Summary & Conclusion

The Christoffel symbols: Covariant derivatives and Riemannian Hessian

General recipe for computing the Hesse (1, 1)-form.

derive the geodesic ODE γ̈ + (. . .) = 0. The terms in red
depend on γ(t) and γ̇(t) and constitute the Christoffel tensor
Γγ(t)(γ̇(t), γ̇(t))) = (. . .).

Find the general form via polarization
Γ(v ,w) = 1

4 (Γ(v + w , v + w)− Γ(v − w , v − w)) .

Compute the Hessian of a scalar function f via the covariant
derivative of the gradient field along a geodesic t 7→ γ(t) with
starting velocity γ(0) = p, γ̇(0) = v :

Hessf (p)[v ] = (∇vgradf )(p) =
D

dt

∣∣
t=0

gradf (γ(t))

=
d

dt

∣∣
t=0

gradf (γ(t)) + Γp(gradf (p), v).

Ongoing: applied for constructing a Riemann trust region method
on SpSpt(2n, 2k) by Rasmus Jensen.



Matrix manifolds, Lie groups, quotients Geodesics matter Optimization, interpolation, MOR Summary & Conclusion

The Christoffel symbols: Covariant derivatives and Riemannian Hessian

General recipe for computing the Hesse (1, 1)-form.

derive the geodesic ODE γ̈ + (. . .) = 0. The terms in red
depend on γ(t) and γ̇(t) and constitute the Christoffel tensor
Γγ(t)(γ̇(t), γ̇(t))) = (. . .).

Find the general form via polarization
Γ(v ,w) = 1

4 (Γ(v + w , v + w)− Γ(v − w , v − w)) .

Compute the Hessian of a scalar function f via the covariant
derivative of the gradient field along a geodesic t 7→ γ(t) with
starting velocity γ(0) = p, γ̇(0) = v :

Hessf (p)[v ] = (∇vgradf )(p) =
D

dt

∣∣
t=0

gradf (γ(t))

=
d

dt

∣∣
t=0

gradf (γ(t)) + Γp(gradf (p), v).

Ongoing: applied for constructing a Riemann trust region method
on SpSpt(2n, 2k) by Rasmus Jensen.



Matrix manifolds, Lie groups, quotients Geodesics matter Optimization, interpolation, MOR Summary & Conclusion

The Christoffel symbols: Covariant derivatives and Riemannian Hessian

”Reversed engineering”

What has happened here?

geodesics from geometric/quotient considerations.

use the solution to derive the underlying ODE

use ODE to read off Christoffel tensor

use Christoffel tensor to compute

covariant derivatives
parallel vector fields
Riemannian Hessian
. . .

Not ”Derive solutions to equations.”, but

”Derive equations from solutions.”
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The impact of curvature

Outline

Subsection 3

The impact of curvature
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The impact of curvature

[Lee, 2018]

Jacobi fields

Positive curvature: Geodesics bend towards each other

Negative curvature: Geodesics spread apart

Consequence: Standard approach of data processing by

(1) mapping data onto the tangent space,
(2) processing data in tangent space,

(3) mapping the result back to manifold,

{
is benign on positively curved manifolds (Stiefel, Grassmann).
adds extra errors on negatively curved manifolds.
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The impact of curvature

Error propagation

Theorem (Errors and curvature [Z., 2020])

LetM be a Riemannian manifold, q ∈M and ∆, ∆̃ ∈ TqM
ϵ := ∥∆− ∆̃∥ and δ = ∥∆∥, δ̃ = ∥∆̃∥. Assume that δ, δ̃ < 1. Let
σ = span(∆, ∆̃) ⊂ TqM and let K (q, σ) be the sectional
curvature at q w.r.t. σ.
The Riemannian distance between p = ExpMq (∆) and

p̃ = ExpMq (∆̃) is

distM(p, p̃) ≤ |δ − δ̃|+ ϵ(1− Kq(σ)

6
δ + o(δ2)) +O(ϵ2).
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The impact of curvature

Figure 2: Interpolation of U-factor of parametric SVD data
U(µ)Σ(µ)V (µ)T ∈ R10,000×300, rank= 10. [Z., 2020]

Absolute (Hermite) interpolation errors in terms of the Riemannian
metric on the tangent space (Tan error) and as measured by the
Riemannian distance function on the manifold (Man error).
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The impact of curvature

Curvature has an impact on the injectivity radius i(M) and thus
on the size of the domain on which one “can safely perform
calculations”.

Theorem ([do Carmo, 1992], §13, Prop. 2.13)

If the sectional curvature K (p, σ) of a complete, compact
Riemannian manifoldM satisfies K (p, σ) ≤ C ∀p ∈M
σ ≤ TpM, with constant C > 0, then:

1 i(M) ≥ π√
C

or

2 there exists a closed geodesic whose length is less than that of
any other closed geodesic, and which is such that
i(M) = 1

2L(γ).

The ‘or’-case does not provide a sharper bound for Stiefel. For
Stiefel, case (1) is decisive.
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The impact of curvature

Curvature has an impact on the injectivity radius i(M) and thus
on the size of the domain on which one “can safely perform
calculations”.
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The impact of curvature

Curvature has an impact on the iteration count:

As a rule: manifold algorithms rely on local linearizations.
For example: shooting methods to compute Stiefel logarithm
[Z. and Hüper, 2022]:

1 step Euclidean case ↔ iteration of steps on manifold
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The impact of curvature

Curvature has an impact on the iteration count:

As a rule: manifold algorithms rely on local linearizations.
For example: shooting methods to compute Stiefel logarithm
[Z. and Hüper, 2022]:

1 step Euclidean case ↔ iteration of steps on manifold

(Cartoon taken from [Bryner, 2017])



Matrix manifolds, Lie groups, quotients Geodesics matter Optimization, interpolation, MOR Summary & Conclusion

The impact of curvature

Curvature has an impact on the iteration count:

As a rule: manifold algorithms rely on local linearizations.
For example: shooting methods to compute Stiefel logarithm
[Z. and Hüper, 2022]:

1 step Euclidean case ↔ iteration of steps on manifold

dist = 0.95π
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The impact of curvature

Curvature has an impact on the iteration count:

As a rule: manifold algorithms rely on local linearizations.
For example: shooting methods to compute Stiefel logarithm
[Z. and Hüper, 2022]:

1 step Euclidean case ↔ iteration of steps on manifold

dist = 1.0π



Matrix manifolds, Lie groups, quotients Geodesics matter Optimization, interpolation, MOR Summary & Conclusion

The impact of curvature

Curvature has an impact on the iteration count:

As a rule: manifold algorithms rely on local linearizations.
For example: shooting methods to compute Stiefel logarithm
[Z. and Hüper, 2022]:

1 step Euclidean case ↔ iteration of steps on manifold

Euclid. metric: α = − 1
2
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The impact of curvature

Canonical Stiefel log computations [Z., 2017]

Solving the geodesic endpoint problem for U, Ũ on St(n, p) boils
down to a nonlinear matrix equation

0 =
(
0 Ip

)
logm

((
M X0

N Y0

)(
Ip 0
0 Φ

))(
0
Ip

)
, Φ ∈ SO(p).

(1)

The blocks M,N and, in turn X0,Y0 are computed from the input
data U, Ũ ∈ St(n, p). The unknown is Φ.

Writing logm

((
M X0

N Y0

)(
Ip 0
0 Φ

))
=

(
A −BT

B C

)
∈ skew(2p),

this means finding an orthogonal Φ such that C = 0.
Intuition: Need to find a rotation Φ such that the tangent vector
becomes horizontal!
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The impact of curvature

Canonical Stiefel log computations [Z., 2017]
Algorithm based on Baker-Campell-Hausdorff formula (BCH,
Dynkin)

V0 :=

(
M X0

N Y0

)
, logm(V0) :=

(
A0 −BT

0

B0 C0

)
,

W0 :=

(
Ip 0
0 Φ0

)
, logm(W0) =

(
0 0
0 logm(Φ0)

)
.

BCH: logm(V0W0) ≈ logm(V0) + logm(W0).
Geometric interpretation:

logm(V0W0) = logm(V0) + logm(W0) ⇔
V0W0 = W0V0 ⇔ [V0,W0] = 0

⇔ zero sectional curvature of plane spanned by V0,W0
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The impact of curvature

Canonical Stiefel log computations [Z., 2017]

Smallest dimension→ largest iteration count and largest error!
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The impact of curvature

Explanation: For Stiefel (and Grassmann) the maximal sectional
curvature is attained for tangent planes spanned by rank-2
matrices.

Experiments with (pseudo-) random data on St(n.p). Number of
cut points found in the range [0.891π, 0.987π] sorted rank of the
velocity tangent matrix.
(taken from Master thesis project of Jakob Stoye, [Stoye, 2023])
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The impact of curvature

How to get curvature information?
Enter again into play: our good old quotient construction.

Theorem ( [Gallier and Quaintance, 2020], Prop. 23.29)

LetM = G/H be a homogeneous space with G a connected Lie
group, assume that g admits an Ad(G )-invariant inner product
⟨·, ·⟩ and let m = h⊥ be the orthogonal complement of h with
respect to ⟨·, ·⟩. (h = TidH is vertical space at id, m is horizontal). Then

1 The space G/H is reductive with respect to the decomposition g = h⊕ m.

2 Under the G-invariant metric induced by the inner product, the homogeneous

space G/H is naturally reductive.

3 The sectional curvature at span{X ,Y } ⊂ m is determined by

⟨R(X ,Y )X ,Y ⟩ = 1

4
∥[X ,Y ]m∥2 + ∥[X ,Y ]h∥2. (3)

for X⊥Y , ∥X∥ = ∥Y ∥ = 1. (The subscripts h,m indicate projections.)



Matrix manifolds, Lie groups, quotients Geodesics matter Optimization, interpolation, MOR Summary & Conclusion

The impact of curvature

How to get curvature information?
Enter again into play: our good old quotient construction.

Theorem ( [Gallier and Quaintance, 2020], Prop. 23.29)

LetM = G/H be a homogeneous space with G a connected Lie
group, assume that g admits an Ad(G )-invariant inner product
⟨·, ·⟩ and let m = h⊥ be the orthogonal complement of h with
respect to ⟨·, ·⟩. (h = TidH is vertical space at id, m is horizontal). Then

1 The space G/H is reductive with respect to the decomposition g = h⊕ m.

2 Under the G-invariant metric induced by the inner product, the homogeneous

space G/H is naturally reductive.

3 The sectional curvature at span{X ,Y } ⊂ m is determined by

⟨R(X ,Y )X ,Y ⟩ = 1

4
∥[X ,Y ]m∥2 + ∥[X ,Y ]h∥2. (3)

for X⊥Y , ∥X∥ = ∥Y ∥ = 1. (The subscripts h,m indicate projections.)



Matrix manifolds, Lie groups, quotients Geodesics matter Optimization, interpolation, MOR Summary & Conclusion

The impact of curvature

Useful matrix inequalities for curvature estimates
For any two matrices A,B ∈ Rm×n, with m, n ≥ 2,

∥ABT − BAT∥F ≤
√
2∥A∥F∥B∥F

[Wu and Chen, 1988]
Related: the (settled) Böttcher-Wenzel conjecture for real, square
matrices

∥AB − BA∥F ≤
√
2∥A∥F∥B∥F

[Böttcher and Wenzel, 2008, Vong and Jin, 2008].

Something along these lines must have been known to Wong
[Wong, 1967, Wong, 1968], who provides sharp bounds for the
sectional curvature on the Grassmann manifold.
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Outline

Section 3

Optimization, interpolation, MOR
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Symplectic Model Order Reduction

Outline

Subsection 1

Symplectic Model Order Reduction
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Symplectic Model Order Reduction

Symplectic Model Order Reduction
[Peng and Mohseni, 2016, Afkham and Hesthaven, 2017, Buchfink et al., 2020] ...

Full order model (FOM)

Hamilton’s equations
{
ẋ(t, µ) = J2n∇Hµ(x),

x(0, µ) = x0(µ) ∈ R2n,

with states x(t, µ) ∈ R2n,
parameters µ ∈ Γ ⊂ Rd , and
Hamiltonian Hµ ∈ C∞(R2n).

Snapshot matrix S with
column vectors x(ti , µj) being
samples of the full system.

Reduced model (ROM)

Approximation
{
ẏ(t, µ) = J2k∇(Hµ ◦ U)(y),

y(0, µ) = U+x0(µ) ∈ R2k ,

subject to

min
U∈R2n×2k

∥S − UU+S∥F

where UT J2nU = J2k .

Assumption: x(t, µ) ≈ Uy(t, µ).
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Symplectic Model Order Reduction

Holy grail? Proper symplectic decomposition? POD/SVD with
symplectic structure?
With the help of Riemannian optimization?

Geometry of symplectic Stiefel and Grassmann:
[Bendokat and Z., 2021]

Quotient space structure

tangent spaces

metrics, Riemannian/pseudo

Riemannian exponential + retractions (Cayley)

Riemannian gradients

Related: [Gao et al., 2021b, Gao et al., 2021a]
Can PSD be used to find a “symplectic SVD” or can a “true
symplectic SVD” be used to solve PSD?
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Symplectic Model Order Reduction

Numerical experiment: 1D parametric Schrödinger

FOM simulations: Störmer-Verlet time-stepping scheme,
h = ∆t = 0.01, [t0, te ] = [0, 20].

Figure 3: Probability density |u(t, x , ϵ)| =
√
q2(t, x , ϵ) + p2(t, x , ϵ) for

time instants t = 0, 10, 20.

Take snapshots at every 10th time step. Snapshot matrix:

S =

((
q(t1)
p(t1)

)
, . . . ,

(
q(tm)
p(tm)

))
∈ R512×201
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Symplectic Model Order Reduction

Numerical experiment: 1D parametric Schrödinger

Reduced dimension k = 10.
Solve

min
UU+∈SpGr(2n,2k)

∥S−UU+S∥F ,

relative error
∥S − UU+S∥F/∥S∥F .

Start init. error opt. error iters.

(0) U0 = E 1.0 0.067 646
(a) cotangent lift 0.261 0.067 284
(b) complex SVD 0.174 0.067 385
(c) SVD-like decomp. 0.0853 0.067 297

(a),(b):[Peng and Mohseni, 2016], (c): [Buchfink et al., 2020] relying on [Xu, 2003]
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Multivariate Hermite interpolation

Outline

Subsection 2

Multivariate Hermite interpolation
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Multivariate Hermite interpolation

Interpolation via optimization

The Riemannian barycenter / Fréchet mean of a sample data set
{p1, . . . , pk} ⊂ M on a manifold:
Minimizer of

M∋ q 7→ L(q) =
1

2

k∑

j=1

wj dist(q, pj)
2,

where

dist(q, pj): Riemannian distance between q, pj ∈M
wj ≥ 0: scalar weights,

∑k
j=1 wj = 1. (pos. measure of unit

weight).

Existence and uniqueness criteria, further details: [Karcher, 1977],
[Afsari et al., 2013].



Matrix manifolds, Lie groups, quotients Geodesics matter Optimization, interpolation, MOR Summary & Conclusion

Multivariate Hermite interpolation

Interpolation via optimization

Let {φj : ω 7→ φj(ω) ∈ R | j = 1, . . . , k} be multivariate
scalar-valued interpolation weight functions with φl(ωj) = δlj and∑k

j=1 φj(ω) ≡ 1: ← signed measure of unit weight.
(constructed, e.g., from Lagrange polynomials, [Sander, 2016], radial basis functions,

[Buhmann, 2003], Kriging)

Interpolant at ω∗: q∗ := argminq∈M L(q, ω∗), where

L(q, ω) :=
1

2

k∑

j=1

φj(ω) dist(q, pj)
2. (4)

Precise conditions for the local existence and uniqueness under signed unit measures:

[Sander, 2016, Theorems 3.1 & 3.19]. Under these conditions, the local minima are

smooth in (q, ω), if the φj are smooth, [Sander, 2016, Theorems 3.19 & 4.1].
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Multivariate Hermite interpolation

Interpolation via optimization

Figure 4: Barycentric interpolation: attached to each sample location
(blue dots) is a weight function φj . The weight functions get excited
depending on their distance to the trial location (red dot), the total
weight always sums up to 1. Once the weights are determined, the
corresponding Riemannian barycenter (aka Fréchet mean) is computed.
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Multivariate Hermite interpolation

Barycentric Hermite Interpolation

Idea: [Z. and Bergmann, 2023], similar idea for Riem. continuation in

[Séguin and Kressner, 2022]

Local minima (= interpolants) characterized by zeros of the
parametric gradient field

(q, ω) 7→ gradq L(q, ω) = −
k∑

j=1

φj(ω) Logq(pj) (5)

parameterize the zero sets via the implicit function theorem

differentiate the implicit function, applied to (5) this yields

v il =

Hessq L(pl , ωl)[v
i
l ] =

k∑

j=1,j ̸=l

∂iφj(ωl) Logpl (pj) (6)

Theorem: For p fixed, the Hesse form of q 7→ 1
2 dist(q, p)

2 at
p is the identity, Hessq L(p) = idTpM : TpM→ TpM.
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Multivariate Hermite interpolation
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Multivariate Hermite interpolation

Equation (6) yields a set of linear equation systems.
Write Logpl (pj) ∈ TplM in a local frame.
Here: dim(M) = dim(TplM) = m.

Logpl (pj) = x jl ,1E
l
1 + · · ·+ x jl ,mE

l
m.

Likewise:

v il = αi
l ,1E

l
1 + · · ·+ αi

l ,mE
l
m.

Equation system for derivatives of coefficient functions:


x1l,1 . . . x l−1

l,1 x l+1
l,1 . . . xkl,1

...
...

...
...

x1l,m . . . x l−1
l,m x l+1

l,m . . . xkl,m
1 . . . 1 1 . . . 1





∂iφ1(ωl )
...

∂iφl−1(ωl )
∂iφl+1(ωl )

...
∂iφk (ωl )


=



αi
l,1

...

...
αi
l,m

0


:= αi

l. (7)
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Multivariate Hermite interpolation

Hermite data on SO(3)

Academic test function:

f : [a, b]2 → SO(3), (ω1, ω2) 7→ expm X (ω1, ω2), where

X (ω1, ω2) =


0 ω2

1 + 1
2
ω2 sin

(
4π(ω2

1 + ω2
2)
)

−ω2
1 − 1

2
ω2 0 ω1 + ω2

2

− sin(4π(ω2
1 + ω2

2)) −ω1 − ω2
2 0

 .

The sample values Pj = expm X (ωj ) at ωj = (ωj
1, ω

j
2) and the corresponding partial

derivatives V i
j = d

dt

∣∣
t=0

expm(X (ωj + tei )) = d(expm)(X (ωj ))[∂iX (ωj )], i = 1, 2 of

the test function can be obtained by Mathias’ theorem, see [Higham, 2008, Thm. 3.6]:

expm

(
X (ωj ) ∂iX (ωj )

0 X (ωj )

)
=

(
expm(X (ωj )) d(expm)(X (ωj ))[∂iX (ωj )]

0 expm(X (ωj ))

)
.
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Multivariate Hermite interpolation

Sampling plan: 7× 7 Chebychev grid

Figure 5: Black dots: Chebychev 7× 7 grid on the domain [−0.5, 0.5]2.
Red stars: trial locations that are used for visualization purposes in the
upcoming Figure 9.
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Multivariate Hermite interpolation

Interpolation errors

Figure 6: Error surfaces for SO(3)-interpolation on a Chebychev 7× 7
grid. Left: Barycentric Hermite Interpolation (BHI). Right: Tangent
Space Hermite Interpolation (THI).
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Multivariate Hermite interpolation

Figure 7: Plots of some selected interpolated matrix component functions

(ω1, ω2)→
(
f̂ (ω1, ω2)

)
i,j
∈ R. The black dots indicate the Chebychev

7× 7 sample grid.
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Multivariate Hermite interpolation

Figure 8: Interpolated matrix component function P̂11 = (f̂ (ω))11
(shaded surface) and the reference matrix component P11 = f (ω) (white
surface) together with the sample locations on a Chebychev 7× 7 grid.
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Multivariate Hermite interpolation

Figure 9: (from upper left to lower right): reference rotations (gray) and
interpolated SO(3)-matrices (blue) at the 6 trial points displayed in Fig.
5. The rotation matrices are visualized via their action on the tea pot
object.
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Multivariate Hermite interpolation

Parameter settings: Interpolation on SO(3)
Manifold domain D #samples threshold
SO(3) [−0.5, 0.5]2 k = 49 (Cheby.) τ = 1.0 · 10−6

Results: barycentric Hermite interpolation (BHI)
Wall clock time Interpolation error

offline online max avg
0.41s 0.077s 0.029 0.0069

Results: tangent space Hermite interpolation (THI)
Wall clock time Interpolation error

offline online max avg
0.73s 0.0023s 0.027 0.0065

Table 1: Associated with Figure 6.
‘offline’: construction of the interpolant
‘online’: time for querying the interpolant at a trial location.
Details: [Z. and Bergmann, 2023].
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Summary & Conclusion

Riemann Exp and Log are fundamental to data processing.
Even when you use retractions in practice, it is valuable to know the
true geodesics.

Lie groups and Lie group quotients are very well-studied objects.
→ Geodesics by geometric arguments (rather than by solving ODEs)

Obtain geometric info from geodesic equation.
→ Covariant derivative, parallel transport, Riemannian Hessian,...

Large (sectional) curvature spoils the performance/iteration count
of geometric methods.
For Stiefel & Grassmann: Curvature max at ”rank-2 tangent
planes”. → Algorithms (generically) more benign in larger dims.
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Summary & Conclusion

At proof-of-concept stage:

Computing a PSD via Riemannian optimization on symplectic
Stiefel for Hamiltonian MOR

Mutlivariate Hermite interpolation

What about really high dimensions?

”More sophisticated, nicer theoretical properties” does not
necessarily mean ”better results in practice”

Open matrix issues:

matrix exponential/general matrix functions for symplectic matrices?

true symplectic counterpart to SVD?
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The end

Thank you for your attention!

Questions?
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Böttcher, A. and Wenzel, D. (2008).
The Frobenius norm and the commutator.
Linear Algebra Appl., 429:1864–1885.

Boumal, N. (2023).
An Introduction to Optimization on Smooth Manifolds.
Cambridge University Press, Cambridge.



Matrix manifolds, Lie groups, quotients Geodesics matter Optimization, interpolation, MOR Summary & Conclusion

References III

Bryner, D. (2017).
Endpoint geodesics on the Stiefel manifold embedded in
Euclidean space.
SIAM Journal on Matrix Analysis and Applications,
38(4):1139–1159.

Buchfink, P., Haasdonk, B., and Rave, S. (2020).
PSD-greedy basis generation for structure-preserving model
order reduction of Hamiltonian systems.
Proceedings of the Conference Algoritmy, pages 151–160.

Buhmann, M. D. (2003).
Radial Basis Functions, volume 12 of Cambridge Monographs
on Applied and Computational Mathematics.
Cambridge University Press, Cambridge, UK.



Matrix manifolds, Lie groups, quotients Geodesics matter Optimization, interpolation, MOR Summary & Conclusion

References IV

do Carmo, M. P. (1992).
Riemannian Geometry.
Mathematics: Theory & Applications. Birkhäuser Boston.
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