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Description of problem

Given m raw data points, (t;,y;), we want to fit a curve of the
form f(x, t) through these points so that we find

mlan(y, f(x,t))

=[r(x)I12

Pick an initial point x(©) and iterate.
Given x(¥) we look for x(kt1) = x(k) 4 g(k),

How to choose s(k)?
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Levenberg-Marquardt

We need to find

1 )
min > (x)

Levenberg-Marquardt (L-M) is one of the most widely used
methods for these problems.
Approximate r(x(k) + s(k)) by its first-order Taylor approximation
r(x%) 4+ sy ~ r(x(9)) + g sk,
and then add a regularization term
) = argmin 2 (x(¥)) + is? + 75|/

ok is shrunk or grown between steps.
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Levenberg-Marquardt

We need to find 1
min 3 () 2

Levenberg-Marquardt (L-M) is one of the most widely used

methods for these problems.

Approximate r(x(k) + s(k)) by its first-order Taylor approximation
r(x%) 4+ sy ~ r(x(9)) + g sk,

and then add a regularization term

1
s = arg min ;Hr(x(k)) + Jis|” + %HS‘F

N o
ok is shrunk or g —
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Levenberg-N
We need to f

Levenberg-M
methods for 1

Approximate

and then add

o is shrunk

METHODS FOR
NON-LINEAR LEAST
SQUARES PROBLEMS

2nd Edition, April 2004

K. Madsen, H.B. Nielsen, O. Tingleff
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Technical University of Denmark

=
—_—
=

i

used

Ffoximation

% Science and
Facilities Council



NEPTUNE (NEutrals and Plasma TUrbulence Numerics)

magnetic flux surfaces

separatrix (LCFS)
edge region

scrape-off
layer

/ first wall

separatrix (LCFS)

plasma core

-
" baffle
divertor region

\
vertical divertor
“target plate

private flux
region
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NEPTUNE (NEutrals and Plasma TUrbulence Numerics)

magnetic flux surfaces

iy,
Y % (LCFS)

Co-design: with experls

in the writing and use of finite elements,

B numerical analysts fo assist in the solution of the resulling large systems of equations, specifically in matrix
preconditioning

B in parficle methods and/or sampling in high-dimensional spaces

in UQ and MOR notably in the use of surrogates fo reduce computational expense including data

movement

PN L % T
\%\\‘ ég.. e 4 - A N\

NS s A A >
- S . = X vertical divertor
SN [ T =\ ¢ private flux “target plate

Co-design: with theoretical plasma physicists consfruefing high-dimensional plasma models, and experts in the

use of particle codes on pre-Exascale hardware.

https://excalibur.ac.uk/themes/high-priority-use-cases/

- wrens ECCFE =X R
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https://excalibur.ac.uk/themes/high-priority-use-cases/

Given a sparse matrix, A € R"*", and vector b € R”, find x such
that

Ax = b.

Our ideal algorithm would
» only use algebraic properties of A
» be able to take advantage of modern architectures

P be able to solve large problems with modest memory
requirements
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Krylov subspace methods




Krylov subspace methods

Suppose we wish to solve
Ax =b.

Look for an approximation x(K) such that

x(F) — x(0) ¢ span {r(o), A

where r® — b — Ax(®),
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A zoo of Krylov methods

TFQMR
MINRES _
BiCGStab
Conjugate Gradients QMR
BiCG
GMRES GCR
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A zoo of Krylov methods

TFQMR

BiCGstab

’Conjugate Gradients QMR

pice GCR

’ Methods which minimize something over the entire Krylov space
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A zoo of Krylov methods

TFQMR

BiCGStab

’ Conjugate Gradients QMR

Hice GCR

’ Methods which minimize something over the entire Krylov space

Methods based on short term recurrences
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GMRES

» suitable for all linear systems

» minimizes ||b — Axg||2

Finds x, in the Krylov subspace

xo + span{r(®, Ar©
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Preconditioning

Ax =b

While any eigenvalues do not fully determine convergence for
GMRES [Greenbaum, Ptak, Strakos (1996)] , GMRES tends to work well if
A has a small condition number.
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Preconditioning

Ax =b

While any eigenvalues do not fully determine convergence for
GMRES [Greenbaum, Ptak, Strakos (1996)] , GMRES tends to work well if
A has a small condition number.

Preconditioning: solve the equivalent problem
MIPAMET (MEX) = M b,

Let P = M ME.

Competing aims:

» Need eigenvalues of MZIAMEI to be clustered
» Need a solve with M or Mg to be cheap
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Preconditioning
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Sparse Matrices and Graphs
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Partitioning

1l sk H % ok

2 | % * * %

3 | = * % * %

4 | % * * x % * %
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10 * % * % % ok ¥
11 * 0k * ok *
12 * ok * ok
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Partitioning
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One-level Additive Schwarz
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One-level Additive Schwarz
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One-level Additive Schwarz

1 * ok ok ok

2 * ok * ok

3 * % * ok
4 T *
5 * * % * %
9 .
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One-level Additive Schwarz
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One-level Restricted Additive Schwarz

Mauay = RI A 'Ry + R An 'R,
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One-level Restricted Additive Schwarz

Partition of unity: D; € R"*™ non-negative, diagonal so that

> RTDR =1
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One-level Restricted Additive Schwarz

Partition of unity: D; € R"*™ non-negative, diagonal so that

> RTDR =1

-~ O

e.g., R DR, = , Ry DR, =

0
Science and 0
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One-level Restricted Additive Schwarz

Partition of unity: D; € R"*™ non-negative, diagonal so that

> RTDR =1

I 0 0 0 0 0
00 0 0/ 0

e.g., RlTDlRl = 05 0 0| > R2TD2R2 = 05 0
0 0 0

Science and 0 0.5 0 0 0 0.5
EEEL 0 0 o3 0 0
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One-level Restricted Additive Schwarz

— T 1
Mgas = > RTDiA;'R;
i=1
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Comparison
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Solution: Coarse spaces

M*_,/l\D = Ry Ap Ry + M,
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Solution: Coarse spaces

*

or

M, per = Ro Ao Ro + M1 (1 —

*
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M_jp = Ry Aw Ry + M

ARJ Ay R,)
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Spectral Coarse Spaces

Multigrid Brezina, Heberton et al. (1999), Charier, Falgout et al.
(2003), Kolev, Vassilevski, (2006), Efendiev, Galvis, Vassilevski
(2011)

DD Nataf, Xiang, Dolean, Spillane (2011), Spillane, Rixen (2013),
Spillane, Dolean et al. (2014), Klawonn, Radtke, Rheinbach
(2015), Klawonn, Kiihn, Rheinbach (2016), Al Daas, Grigori
(2019), Al Daas, Grigori, Jolivet, Tournier (2021), Al Daas, Jolivet
(2021)

Indefinite /non-self-adjoint systems Manteuffel, Ruge,
Soutworth (2018), Manteuffel, Miizenmaier, Ruge, Soutworth
(2019), Bootland, Dolean et al. (2019, 2020, 2021, 2021, 2021,
2021), Dolean, Jolivet et al. (2021)
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Fictitious Subspace Lemma

Let H and Hp be two Hilbert spaces, with scalar products (-, -)
and (-,-)p. Let A: H— H and B : Hp — Hp, and consider the
spd bilinear forms generated by these operators a(u, v) = (Au, v),
b(up,vp) = (Bup,vp). Let R be an operator such that Hp — H,
and R* be its adjoint. Suppose that:

> The operator R is surjective
» There exists ¢, > 0 such that

a(Rv,Rv) < ¢,b(v,v), Yv € Hp

» There exists ¢; > 0 such that for all v € H, there exists
v € Hp such that u = Rv and

cb(v,v) < a(Rv,Rv) = a(u, u)

Then A(RB™R*A) € [c), cu].



Fictitious Subspace Lemma

N ert N
. n; n
RHR — R an B:HRniﬁRni
i=0 N db -0
T R N T AR u:
(ui)o<i<n +— Z R ui pos (ui)osicn — ((R’ AR')U')0<,'<N
i=0 1 —

P T/he operator R is surjective

» /There exists ¢, > 0 such that

a(Rv,Rv) < ¢,b(v,v)/ Vv € Hp

»| There exists ¢; > 0 such that for all v € H, there exists
v € Hp such that u = Rv an




Block Splitting Matrices

A local Symmetric positive semi-definite (SPSD) splitting of a
sparse SPD matrix is any SPSD matrix of the form:

N A Ari
P,A P = Ari Ari ;

where Z\r’,- is any SPSD matrix such that

0< uTZ,-u < uTAu, ueR"

- Science and [Al Daas, Grigori (2019)]
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Block Splitting Matrices

A local Symmetric positive semi-definite (SPSD) splitting of a
sparse SPD matrix is any SPSD matrix of the form:

N A Ari
P,A P = Ari Ari ;

1
~ 2
where Ar ; 3
4
5
9 * % * *
10 * % ok kx| k%
11 ki ok * * ok
12 * ok * ok
13 *  ox % K
6 * %
7 * %
8 *

- Sclence and |Al Daas, Grigori (2019)]
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Block Splitting Matrices

A local Symmetric positive semi-definite (SPSD) splitting of a
sparse SPD matrix is any SPSD matrix of the form:

PI'ZI'P,'T - Aii )

where Z\r’,- is any SPSD matrix such that

0< uTZ,-u < uTAu, ueR"

- Science and [Al Daas, Grigori (2019)]
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Building a coarse space

Given the local non-singular matrix A;; = R:AR;", the local
splitting matrix A;; = R,-A--R-T and the partition of unity matrix,

[/

D;, let L; = ker(D,-A;,-D,-) and K; = ker(A;,-).
Consider the generalized eigenvalue problem: find (\, u) such that
I'I,-D,-A,-,-D,-I'I,-u = )\Z\,’,’U,

where I1; is the projection on range(A;).

Given 7 > 0, let Z; be the matrix whose columns form a basis of
the subspace

(Li VK 6 @ span{u : |\ >1/7}

Consider the coarse space defined as

Science and T _ T T
=55, RO =[RIDizi ... R{DNZy]



How effective is this?
Theorem [Al Daas and Grigori, 2019]
If we build a spectral coarse space using local SPSD splitting

matrices, as described, then

1
<AMZE, o A) < (ke + 1
2+(2kc—|—1)km7-_ ( ASM additive )—( c+ )7

where
» 7 is the parameter chosen in the construction of the coarse
space

» k. is the number of colours required to colour the graph of A
such that two neighbouring subdomains have different
colours, and

» K., is the maximum number of overlapping subdomains
sharing a row of A.

Proof Show that this construction satisfies the fictitious subspace
lemma.



Choice of splitting matrices?

GenEO ('Generalized Eigenvalue Problems in the Overlap’)
[Spillane, Nataf, et al. (2014)] fits into this framework.
Here
N A Ari
P,APT = |Ari Ary

Note that the upper bound in GenEO is algebraic, but the lower
bound requires properties from the discretizatign of the underlying
PDE.

The integral of the operator in
the overlapping region with its
neighbouring subdomains

Science and
Technology
Facilities Council
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A fully algebraic choice?

Suppose that A is diagonally dominant, and for each / we have

Aii Arri
PiAP = [ Ari Ari Ari
Acri Aci

Let 5i(j) = > _ |Arci(j, k)|, and define

K
y [Ali /ﬁ/ri] 7
Arii - Ari

where Z\r,’ = Ar,' - d/ag(s,)

Science and
Technology
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SPSD splitting matrix

Lemma [Al Daas, Jolivet, R. (2023)]
This local block splitting defines a local SPSD splitting matrix of A
with respect to subdomain i.

Proof
First, note that

) AG.J) i e,
Al(./u./): A(J?./)_SI(J) IfJEQr,’
0 If./ € Qch

> Aiis symmetric and diagonally dominant, by construction,
hence SPSD

> A—Ais symmetric and diagonally dominant, hence SPSD

Therefore, by the local structure of Z,-, it is a SPSD splitting of A
wrt subdomain 1.



Numerical results: Set Up

v

Used as a preconditioner for right-preconditioned GMRES:
restart parameter of 30, with relative tolerance of 1078.

Use the implementation as -pc_hpddm block_splitting
(part of PCHPDDM) in PETSc (from 3.17) to compute local
splitting matrices

Uses 256 MPI processes

Matrix reordered by applying ParMETIS to A+ AT.

At most 60 eigenpairs are computed, and 7 = 0.3.
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Numerical results: SuiteSparse

Identifier n nnz(A) AGMG BoomerAMG GAMG ML . ng

light_in_tissue 29,282 406,084 15 i 53 6 7,230
finan512 74,752 596,992 9 7 8 6 2,591
consph 83,334 6,010,480 93 31,136
Dubcova3 146,689 3,636,643 72 Tl 7 21,047
co 221,119 7,666,057 25 26 56,135
nxpl 414,604 2,655,880 T T T 20 19,707
CoupCons3D 416,800 17,277,420 T 26 20 28,925
parabolic_fem 525,825 3,674,625 12 8 16 5 24,741
Chevron4 711,450 6,376,412 i i 5 22,785
apache?2 715,176 4,817,870 14 11 35 8 45,966
tmt_sym 726,713 5,080,961 14 10 17 5 28,253
tmt_unsym 917,825 4,584,801 23 13 18 6 32,947
ecology?2 999,999 4,995,991 18 12 18 6 34,080
thermal2 1,228,045 8,580,313 18 14 20 26 40,098
atmosmodj 1,270,432 8,814,880 T 8 17 1 76,368
G3_circuit 1,585,478 7,660,826 25 12 35 8 71,385
Transport 1,602,111 23,487,281 18 10 98 9 76,800
memchip 2,707,524 13,343,948 i 15 i 36 57,942
circuittM_de | 3,523,317 14,865,409 T 5 [ 8,629
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Numerical results

Identifier

light_in_tissue 29,282
finan512 74,752
consph 83,334
Dubcov 146,689
co 221,119
nxpl 414,604
CoupCons3D 416,800
parabolic_fem 525,825
Chevron4 711,450
apache?2 715,176
tmt_sym 726,713
tmt_unsym 917,825
ecology2 999,999
thermal2 1,228,045
atmosmodj 1,270,432
G3_circuit 1,585,478
Transport 1,602,111
memchip 2,707,524
circuitbM_de | 3,523,317

8,580,313
8,814,880
7,660,826

23,487,281

13,343,948

14,865,409

_i
]
|

M i onatea

6
6

o
7,230
2,591
31,136
21,047
56,135
19,707
28,925
24,741
22,785
45,966
28,253
32,947
34,080
40,098
76,368
71,385
76,800
57,942

8,629
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Numerical results

i

deflated

Identifier

light_in_tissue 29,282 |
finan512

consph

Dubcov

co

nxpl

CoupCons3D

parabolic_fem 525,825 |
Chevron4 711,450

apache?2 715,176

tmt_sym 726,713 | oo ol
tmt_unsym 917,825 4,584,801
ecology2 999,999 4,995,991
thermal2 1,228,045 8,580,313
atmosmodj 1,270,432 8,814,880
G3_circuit 1,585,478 7,660,826
Transport 1,602,111 23,487,281
memchip 2,707,524 13,343,948
circuittM_de | 3,523,317 14,865,409

047
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Numerical results

Identifier R I MG ng
light_in_tissue 29,282 | I I 230
finan512 591
consph 136
Dubcov 047
co 135
nxpl 707
CoupCons3D 925
parabolic_fem 525,825 | | N S o I
Chevron4 711,450 i

apache2 715,176 ! oo
tmt_sym 726,713 L oo e . J H

tmt_unsym T i

ecology2 1| :

thermal2 i

atmosmodj 8,814,880 | i

G3_circuit 2 7,660,826 -

Transport / 1,602,111 23,487,281

memchip 2,707,524 13,343,948

circuittM_de | 3,523,317 14,865,409 T
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Numerical results: Convection Diffusion

V- (Vu) —vV - (kVu)=01in Q
UZOinro
u:linF1

Discretized using SUPG
stabilization in FreeFEM.

The value of the velocity field V
is either:

2x(1 —x)(2y — 1)z
X,y) = x(1=x)(2y = 1) or X,y,2Z) = — — X —
V(x,y) (—y(l —y)(2x — 1)) V(x,y,z) (_Z(l {(i)@i)ﬁzl)(%];)_ 1)) ,

in 2D and 3D, respectively.

Science and [Notay (2012)]
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Numerical results: Convection Diffusion

V- (Vu) —vV - (kVu)=01in Q
UZOinro
u:linF1

e
L I

Discretized using SUPG
stabilization in FreeFEM.

. A1 SRR
The value of the velocity field V S E————_— H
is either: s

2x(1 —x)(2y — 1)z

X = x(1=x)(2y = 1) or X,y,z) = — — X —
Vo) (—Y(l—Y)(2X—1)) Vo) (—z(l f(i)(zi)le)(z}lf)— 1)>’

in 2D and 3D, respectively.

Science and [Notay (2012)]
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Solution

Science and
Technology
Facilities Council

33



Solution

Science and
Technology
Facilities Council

33



Solution
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Numerical results

Dimension N n 1 101 fo_z 10-3 10~
2 1,024 | 6.3-10° 23 (s2.875) 20 (s2.872) 19 52750 20 (araomy 21 (25,235
3 4;096 8.1- 106 18 (1.8.10%) 14 (18105 11 (1.6.10%) 16 (97,657 29 (76.853)
2-level Additive Schwarz
Di . 14
Hmension " 1 107! 1072 1073 10*
) 63-10° | 42 48 88 1 :
3 81-10° |40 38 65 1 i
GAMG
D. . v
1mMension n 1 10_1 10_2 10—3 10—4
2 6.3-10° | 50 49 19 7 T
E B1-10° |12 9 7 f 1
Fachitios Souncil BoomerAMG
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Saddle point systems?

What about systems of the form
A BT
B —-C

Not symmetric positive definite — do not fit in this framework

Science and
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Saddle point systems

We have the block factorization

A BT [ 1 0]JfA 0
B —-C| |BA™ I||0 —(C+BA'BT)

Science and
Technology
Facilities Council
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Saddle point systems
We have the block factorization

A B™ [ 1 0]fA 0 I AlBT
B —Cc| |BAt I]|0 —(C+BA'BT)| |0 /

It's enough to be able to solve with A and S = C + BA 'B'.

Science and
Technology
Facilities Council
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Saddle point systems

We have the block factorization

[g fﬂ - [8/4‘1 ﬂ [g\ —(C+§A18T)] [cl) A_I/BT]

It's enough to be able to solve with Aand S = C + BA BT,

If A~ D, a diagonal matrix, then we can apply the ideas earlier to
A and S (see [Al Daas, Jolivet, Scott (2022)] )
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Helmholtz optimal control

.1
min _ —

2 é 2
i SIW() — wilky + 521

subject to

~V2u — K?u = F(z) in Q
Oyu = Bi(z) on 'y
Oypu — idku = Bo(z) on Iy
u=0onTs3;.

See [Kouri, Ridzal, Tuminaro (2021)]
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Discretized problem

cC 0 K*
0 BR L*
K L 0
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Discretized problem

real target
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real control
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Discretized problem

real target real control
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Discretized problem

real target

05 o5
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Results

2 dimensions, 2° x 2% uniform mesh, b= 1074,
DD uses 128 subdomains, x(M~1S) < 100.

Preconditioner

w
2

DD

63 (2,729

Kouri et al.
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Conclusions

>

>

We have presented a fully algebraic DD preconditioner for
diagonally dominant matrices

Although we have proved convergence for diagonally dominant
matrices, the construction is algebraic and can be applied to
any systems

By breaking down more complex systems into SPD
subproblems, this can be applied more widely, e.g., to certain
saddle point systems.
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