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Algorithms in Numerical Linear Algebra (NLA)
For Ax = b, Ax = λ(B)x, A = UΣV T

1. Classical (dense) algorithms (LU, QR, Golub-Kahan)
▶ (+) Incredibly reliable, backward stable
▶ (−) Cubic complexity O(n3)

2. Iterative (e.g. Krylov) algorithms
▶ (+) Fast convergence for ’good’ matrices: clustered eigenvalues or

(GMRES) or well-conditioned (LSQR)
▶ (−) If not, need preconditioner

3. Randomized algorithms
▶ (+) Next slide(s)
▶ (−) Lack of reproducibility, might lose nice properties, e.g. structure
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What can randomization do for you?
1. Sketch and solve/precondition

▶ least-squares [Rokhlin-Tygert (08)], [Drineas-Mahoney-Muthukrishnan-Sarlós

(10)], [Avron-Maymounkov-Toledo (10)], [Meng-Saunders-Mahoney 14]

2. Near-optimal solution with lightning speed

Part I: low-rank SVD,
Part III: low-rank tensor (Tucker)

▶ e.g. SVD [Halko-Martinsson-Tropp (11)], [Woodruff (14)]
3. Sample to approximate

(Part II: rank estimation)

▶ Monte Carlo style; often comes with error estimates
▶ e.g. matrix multiplication [Drineas-Kannan-Mahoney (06)], trace

estimation [Avron-Toledo (11)], [Musco-Musco-Woodruff (20)]
4. Avoid pathological situations by perturbation/blocking

▶ e.g. eigenvalues [Banks-Vargas-Kulkarni-Srivastava (19)], block Lanczos
[Musco-Musco 15], [Tropp 18]
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Sketching: Key idea in randomized linear algebra

Roughly: to solve a problem w.r.t. A , form random matrix Y

and work with Y T A (or sometimes Y T AX )
Key insight: the sketch inherits A’s low-dimensional structure if present
Success stories in
▶ Low-rank approximation [Halko-Martinsson-Tropp 11, Woodruff 14, N. 20

etc]
▶ Least-squares [Rokhlin-Tygert 09, Avron-Maymounkov-Toledo 10]
▶ Linear sytems and eigenvalue problems [Balabanov-Grigori 22,

N.-Tropp 21]
▶ Rank estimation [Meier-N. 21]
▶ and many others
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Sketching for least-squares problems
For A: n× k, n≫ k

min
x

∥∥∥∥∥∥∥∥∥∥
A x − b

∥∥∥∥∥∥∥∥∥∥
2

⇒ min
x̂

∥∥∥∥∥ SA x̂ − Sb

∥∥∥∥∥
2

With “reasonable/random” sketch S ∈ Cs×n (s > k, say s = 2k),

(1− ϵ)∥Av − b∥2 ≤ ∥S(Av − b)∥2 ≤ (1 + ϵ)∥Av − b∥2,

for some ϵ (not small, e.g. ϵ = 1
2) “subspace embedding”. Hence the

sketched solution x̂ satisfies
∥Ax̂− b∥2 ≤

1 + ϵ

1− ϵ
∥Ax− b∥2.

▶ if ∥Ax− b∥2 is small, x̂ is a great solution!
▶ SA in O(nk log n) cost: SRFT, or O(nnz(A)) with sparse sketch

[Sarlos 06, Clarkson-Woodruff 17]
▶ For full accuracy do SA = QR, solve min ∥AR−1y − b∥2 via LSQR

[Rokhlin-Tygert (08)], Blendenpik [Avron-Maymounkov-Toledo 10] 4/33



Explaining why sketching works via M-P
Marchenko-Pastur: ’Rectangular random matrices are well-conditioned’
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Claim: ∥Av − b∥2 ≈ ∥S(Av − b)∥2 for all v (≈: ’same up to O(1) factor’)
▶ Let [A, b] = QR. S[A, b] = (SQ)R. Can write ∥Av − b∥2 = ∥Qw∥2

and ∥S(Av − b)∥2 = ∥(SQ)w∥2.
▶ Now SQ is rectangular+random⇒ σi(SQ) ≈ 1 by M-P.
▶ Hence ∥(SQ)w∥2 ≈ ∥Qw∥2 for all w.

Related to J-L Lemma, RIP, oblivious subspace embedding etc 5/33



(Most) important result in Numerical Linear Algebra
Given A ∈ Rm×n (m ≥ n), find low-rank (rank r) approximation

A ≈ Û Σ̂ V̂ T , Σ̂ ∈ Rr×r

▶ Optimal solution Ar = UrΣrV T
r via truncated SVD

Ur = U(:, 1 : r), Σr = Σ(1 : r, 1 : r), Vr = V (:, 1 : r), giving

∥A−Ar∥ = ∥diag(σr+1, . . . , σn)∥

in any unitarily invariant norm [von Neumann 37, Horn-Johnson 85]
▶ But that costs O(mn2); look for faster approximation
▶ Low-rank matrices everywhere [Beckermann-Townsend 17]
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Part I: Randomized low-rank matrix approximation
[Halko-Martinsson-Tropp, SIREV 2011]

1. Form a random matrix X ∈ Rn×r.
2. Compute AX and its QR factorization AX = QR.

3. A ≈ Q QT A is low-rank approx.

▶ O(mnr) cost for dense A, can be reduced to O(mn log n + mr2) via
FFT and interp. decomp. (slightly worse accuracy)

▶ mr2 dominant if r >
√

n or e.g. A sparse
▶ Near-optimal approximation guarantee: for any r̂ < r,

E∥A− Â∥F ≤
(

1 + r

r − r̂ − 1

)
∥A−Ar̂∥F

where Ar̂ is the (optimal) rank r̂-truncated SVD 7/33



Generalized Nyström

stabilized

Generalized Nyström (

S

GN) : [N. 2020]

A ≈ AX(Y TAX)

ϵ

†Y TA = AX (Y TAX)

ϵ

† Y TA

▶ X ∈ Rn×r, Y ∈ Rm×(r+ℓ), ℓ = cr (we choose c = 0.5)
▶ e.g. Gaussian Xij ∼ N(0, 1)
▶ or SRFT X = DFS, D : diag, F : FFT, S: subsampling (or hashing)

▶ Near-optimal cost, essentially AX and Y TA. Single-pass
▶ Near-optimal accuracy, comparable to HMT, Nyström

▶ Numerically stable with ϵ-pseudoinverse (UΣV T )†
ϵ = V Σ†

ϵU
T

▶ Key tool for convergence+stability analysis: Marchenko-Pastur
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Quick proof of why Range(AX) is good

If A = U1 Σ1 V T
1 + E (∥E∥ small), then

AX = U1 Σ1 V T
1 X + EX, V T

1 X Gaussian if X is, and rectangular

So by M-P ∥(V T
1 X)†∥ = O(1). Right-multiply (V T

1 X)†V T
1 to get

AX (V T
1 X)† V T

1 + Ẽ = U1Σ1V T
1 + Ẽ ≈ A

Hence Range(A) ⊂∼ Range(AX)
9/33



Approximants of form AX(Y TAX)†Y TA
(or A(ATA)qX(Y TA(ATA)qX)†Y TA)

Ω: random matrix (e.g. Gaussian, SRFT)
X, Y q stable? cost for dense A

HMT 2011 X = Ω, Y = AX 0
√

O(mnr)
Nyström (A ≻ 0) Y = X = Ω 0 (×) O(mn log n + mr2)
HMT+Nyström Y = X = Q, AΩ = QR 1 (×) O(mnr)
Subspace iter X = Ω, Y = Ω̃ > 1 (

√
) O(mnrq)

TYUC19 (4 sketch matrices) 0 (
√

) O(mn log n + mr2)
TYUC17 X = Ω, Y = Ω̃ 0 (

√
) O(mn log n + mr2)

Clarkson-Woodruff09(C-W) X = Ω, Y = Ω̃ 0 (×) O(mn log n + r3)
Demmel-Grigori-Rusciano19 C-W+extra term 0 (×) O(mn log n + mr2)

This work, GN X = Ω, Y = Ω̃ 0
√

O(mn log n + r3)

(×): unstable examples exist (though often perform ok)
(
√

): conjectured to be stable (no proof)

▶ GN Combines stability and near-optimal complexity
▶ explicit constants available: GN 10mn log n + 7

3r3 flops
10/33



Experiments: dense matrix
Dense 50000× 50000 matrix w/ geom. decaying σi
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HMT: Halko-Martinsson-Tropp 11, TYUC: Tropp-Yurtsever-Udell-Cevher 17

▶ GN and TYUC have same accuracy (as they should)
▶ GN faster, up to ≈ 10x
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Experiments: implementation of (Y TAX)† and stability

A ≈ AX(Y TAX)†Y TA
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▶ pinv (direct computation of pseudoinverse) is unsurprisingly unstable
▶ backslash is better but not perfect
▶ QR-based Âr = ((AX)R−1)(QT (Y TA)) (recommended)

implementation is provenly stable 12/33



Part I in a nutshell
n = 1000; % size
A = gallery(’randsvd’,n,1e100);
r = 200; % rank

X = randn(n,r); Y = randn(n,1.5*r);
AX = A*X;
YA = Y’*A;
YAX = YA*X;
[Q,R] = qr(YAX,0); % stable implementation of pseudoinverse
At = (AX/R)*(Q’*YA);

norm(At-A,’fro’)/norm(A,’fro’)
ans = 2.8138e-15

For details, please see arXiv 2009.11392
“Fast and stable randomized low-rank matrix approximation”
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Rank estimation main idea: random embedding preserves O(σi)

A → A X

→ Y T AX = Y TAX ∈ CO(r)×r

X, Y : Gaussian (or SRFT), scaled s.t. σi(QT X), σi(Y Q) ∈ [1− δ, 1 + δ].
Key fact: σi(A)

σi(Y T AX) = O(1) for i = 1, 2, . . . , r
14/33



The rank estimation algorithm

Algorithm Given A ∈ Cm×n, tolerance ϵ and an upper bound for rank r1,
compute approximate ϵ-rank.

1: Set r̃1 = round(1.1r1) to oversample by 10%.
2: Draw n× r̃1 random embedding matrix X.
3: Sketch: Compute the m× r̃1 matrix AX.
4: Set r2 = 1.5r̃1, draw an r2 ×m SRFT embedding matrix Y .
5: Form the r2 × r̃1 matrix Y TAX.
6: Compute the first r1 singular values of Y TAX.
7: Output smallest r̂ s.t. σr̂+1(Y TAX) ≤ ϵ.

▶ Complexity: O(mn log n + r3)
▶ When done within GN AX(Y TAX)†Y TA, extra cost is marginal

Please see [Meier-N. arXiv 2020] for details
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Part III: Tucker decomposition/approximation of tensors

r̂3

r̂2

r̂1 C

r̂1

n1

F 1

n2

r̂2F 2
A

n2

n1

n3

≈
r̂3

n3
F 3

A ∈ Rn1×n2×···nd

Tucker decomposition:

A := C ×1 F1 ×2 F2 · · · ×d Fd

▶ Factor matrix Fi ∈ Rni×r̂i , (r̂1, . . . , r̂d) ≤ (n1, . . . , nd), often “≪“
▶ Easy to force Fi orthonormal (not necessary)

Other tensor decompositions (not covered here): CP, tensor train
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Unfoldings

[Image from Ouamane et al (2017)]
If C ∈ Rn1×···×nd , M ∈ Rmk×nk , then

B = C ×k M ∈ Rn1×···nk−1×mk×nk+1×···×nd

is the mode-k product of C and M if B(k) = MC(k).
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Big-picture idea
Idea: if

r̂3

r̂2

r̂1 C

r̂1

n1

F 1

n2

r̂2F 2
A

n2

n1

n3

≈
r̂3

n3
F 3

then

n2n3

n1
A(1)

A

n2

n1

n3

→unfold

≈

r̂1

n1

F 1

n2n3

r̂1B
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Big-picture idea cont’d

n2n3

n1
A(1)

A

n2

n1

n3

→unfold

≈

r̂1

n1

F 1

n2n3

r̂1B

This implies with B = unfold(Bnew)

n3

n2

r̂1 Bnew

r̂1

n1

F 1A

n2

n1

n3

≈
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RTSMS:overview

n3

n2

r̂1 Bnew

r̂1

n1

F 1A

n2

n1

n3

≈

Repeat: work on “unfold(Bnew)(2)”

n3

r̂2

r̂1 Bnew

r̂1

n1

F 1

n2

r̂2F 2
A

n2

n1

n3

≈

Finally on “unfold(Bnew)(3)”

r̂3
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r̂1 C

r̂1

n1

F 1

n2

r̂2F 2
A

n2

n1

n3

≈
r̂3

n3
F 3
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RTSMS:overview
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RTSMS:overview
Repost:

n3

n2

r̂1 Bnew

r̂1

n1

F 1A

n2

n1

n3

≈

iff

n2n3

n1
A(1)

A

n2

n1

n3

→unfold

≈

r̂1

n1

F 1

n2n3

r̂1B

So high-level alg:
1. Unfold current core tensor to get (fat) matrix A(1)
2. Find low-rank approximation A(1) ≈ F1B(2)
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Low-rank approximation of unfolding
To find A(1) ≈ F1B(2)

n2n3

n1
A(1)

A

n2

n1

n3

→unfold

≈

r̂1

n1

F 1

n2n3

r̂1B

One can use (alg may find F first or B first)
▶ SVD: STHOSVD [Vannieuwenhoven-Vandebril-Meerbergen 12]
▶ HMT: R-STHOSVD [Minster-Saibaba-Kilmer 20]
▶ GN: (roughly) RTSMS (this work)
▶ Other approaches: HOSVD on unfoldings of original tensor A (more

computation, perhaps more parallel) [Sun-Guo-Luo-Tropp-Udell (20) etc] 22/33



RTSMS (Randomized Tucker via Single-Mode-Sketch)
From GN: Taking Gaussian Ω ∈ Rr1×n1 ,

A(1) ≈ F̂ ΩA(1)

Then find F̂ . In GN, Ω2 iid Gaussian, A(1) ≈ A(1)Ω2(ΩA(1)Ω2)†ΩA(1)

Theorem
Let Â be the output of RTSMS with Gaussian sketches. Then

E∥Â−A∥F ≤
d∑

j=1

 j∏
i=1

√
1 + r̂i

ℓi − 1

√
1 + r̂i − ℓi

r̂i − ℓi − ri − 1

 ∥A−Aopt∥F ,

where Aopt is the best Tucker approx., 1 < ℓi ≤ r̂i − ri.
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RTSMS (Randomized Tucker via Single-Mode-Sketch)
From GN: Taking Gaussian Ω ∈ Rr1×n1 ,

A(1) ≈ F̂ ΩA(1)

Then find F̂ . In GN, Ω2 iid Gaussian, A(1) ≈ A(1)Ω2(ΩA(1)Ω2)†ΩA(1)
but then Ω2 ∈ R(n2n3···nd)×O(r̂1), enormous (storage cost)
Instead: in RTSMS we obtain F̂ via the least-squares problem

min
F ∈Rn1×r̂1

∥∥∥∥∥∥∥∥∥∥
AT

(1)Ω
T

F̂ T − AT
(1)

∥∥∥∥∥∥∥∥∥∥
2
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RTSMS: solving LS

min
F̂ ∈Rn1×r̂1

∥∥∥∥∥∥∥∥∥∥
AT

(1)Ω
T
1 F̂ T − AT

(1)

∥∥∥∥∥∥∥∥∥∥
F

▶ Massively overdetermined (n2 · · ·nd)× r̂1
▶ Many right-hand sides (AT

(1) ∈ R(n2···nd)×n1)
▶ AT

(1)Ω
T
1 is extremely ill-conditioned (by assumption/construction)

Which means
▶ Sketching is natural+attractive approach
▶ Important to avoid sketching cost for RHS, SAT

(1)
▶ Stability issues: Natural approaches (sketch-to-solve, Blendenpik,

even backslash) don’t work
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RTSMS: solving LS
As before, sketch for efficiency:

min
F̂ ∈Rn1×r̂1

∥∥∥∥∥∥∥∥∥∥
S

 AT
(1)Ω

T
1 F̂ T − AT

(1)


∥∥∥∥∥∥∥∥∥∥

F

▶ To reduce sketching cost for SAT
(1), let S ∈ Rs×n2n3 be subsampling

matrix (row-submatrix of In2n3), indices chosen via leverage scores
of AT

(1)Ω
T
1 (i.e., row norms of orthonormal basis), also estimated via

randomization
▶ Rows are chosen randomly with probability proportional to leverage

scores
▶ Rank adaptivity: computation gives rank estimate almost for free
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LS and sketched LS
Fact about general (sketched) least-squares problems:

Theorem
Let A = QR be thin QR factorization with Q ∈ Rm×n, and let X̂∗ denote
the solution for minX ∥S(AX −B)∥F , S ∈ Rs×m, m > s > n. Then

∥AX̂∗ −B∥F ≤
∥S∥2

σmin(ST Q) min
X
∥AX −B∥F . (1)

▶ Important that σmin(ST Q) not small (as in DEIM), and ∥S∥2 not
enormous

▶ Good subset selection (leverage scores, QRCP, GEPP,
Batson-Spielman-Srivastava etc) achieves this
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Solving ill-conditioned LS
To improve stability of minF̂ ∥S(AT

(1)Ω
T
1 F̂ T −AT

(1))∥F (ill-conditioned)
1. Tikhonov regularization: For a fixed/small λ > 0,

min
F̂ (1)∈Rn1×r̂1

∥S1(AT
(1)Ω

T
1 (F̂ (1))T −AT

(1))∥
2
F + λ∥F̂ (1)∥2F .

Equivalent to minF̂

∥∥∥∥∥
[
S1AT

(1)Ω
T
1√

λI

]
F̂ −

[
S1AT

(1)
0

]∥∥∥∥∥
2

F

.

2. Iterative refinement: Compute residual B := AT
(1) − F̂ (1)Ω1A(1),

and solve

min
F̂ (2)∈Rn1×r̂1

∥S2(AT
(1)Ω

T
1 (F̂ (2))T −B)∥2F + λ∥F̂ (2)∥2F .

Overall solution: F = F̂ (1) + F̂ (2), yielding A(1) ≈ FΩA(1)

27/33



Solving ill-conditioned LS
To improve stability of minF̂ ∥S(AT

(1)Ω
T
1 F̂ T −AT

(1))∥F (ill-conditioned)
1. Tikhonov regularization: For a fixed/small λ > 0,

min
F̂ (1)∈Rn1×r̂1

∥S1(AT
(1)Ω

T
1 (F̂ (1))T −AT

(1))∥
2
F + λ∥F̂ (1)∥2F .

Equivalent to minF̂

∥∥∥∥∥
[
S1AT

(1)Ω
T
1√

λI

]
F̂ −

[
S1AT

(1)
0

]∥∥∥∥∥
2

F

.

2. Iterative refinement: Compute residual B := AT
(1) − F̂ (1)Ω1A(1),

and solve

min
F̂ (2)∈Rn1×r̂1

∥S2(AT
(1)Ω

T
1 (F̂ (2))T −B)∥2F + λ∥F̂ (2)∥2F .

Overall solution: F = F̂ (1) + F̂ (2), yielding A(1) ≈ FΩA(1)
27/33



RTSMS summary

Algorithm RTSMS: Given A ∈ Rn1×···×nd and target tolerance tol, find
approximate Tucker decomposition.

1: Set Bold := A.
2: for i = 1, . . . , d do
3: Find rank ri via randomized rank estimator s.t. σri(Bold

(i) ) ≲ tol

(unless ri given)
4: Draw Gaussian Ωi ∈ Rr̂i×ni where r̂i := round(1.5 ri).
5: Compute Bnew = Bold ×i Ωi.
6: Find Fi of size ni × r̂i to minimize ∥Bnew ×i Fi − Bold∥F , using

leverage scores+regularization+iterative refinement
7: Update Bold := Bnew.
8: end for
9: Set C := Bnew.
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Comparison
Table: Costs for computing rank (r, r, . . . , r) Tucker of an order-d tensor
n× n · · · × n, r ≪ n. r̂ = r + p (p: oversampling, e.g. p = 5 or p = 0.5r).

Algorithm dominant sketch dominant operation
cost size

HOSVD dnd+1 SVD of d unfoldings each of size n× nd−1

[De Lathauwer et al 00]
STHOSVD nd+1 SVD of A(1) which is n× nd−1. (Later
[Vannieuwenhoven et al 12] unfoldings are smaller due to truncation)
R-HOSVD drnd r̂ × nd−1 computing A(i)Ωi where Ωi of size
[Minster-Saibaba-Kilmer 20] nd−1 × r̂ and then forming

QT
i A(i) for all i

R-STHOSVD rnd r̂ × nd−1 forming A(1)Ω1 with Ω1 of size
[Minster-Saibaba-Kilmer 20] nd−1 × r̂. Subsequent unfoldings

and sketching matrices are smaller
single-pass rnd r̂ × nd−1 sketching by structured (Khatri-Rao
[Sun et al.(20)] product) dimension reduction maps
RTSMS rnd r̂ × n computing Ω1A(1) with Ω1 of size

(nd log n) r̂ × nd−1
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Experiments
Runge function f(x, y, z) = 1/(5 + x2 + y2 + z2)
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▶ RHOSVDSMS: RTSMS followed by orthogonalization of Fi

▶ R-STHOSVD: [Minster-Saibaba-Kilmer 2020]
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More experiments
Wagon function f(x, y, z) = exp(sin(50x)) + sin(60 exp(y)) sin(60z) + · · ·
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▶ R-STHOSVD: [Minster-Saibaba-Kilmer 2020]
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Compressing videos
A: 3D tensor 483× 720× 1280; 483 frames of a video

original RTSMS with tol = 10 -2 RTSMS with tol = 10 -3
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Summary
▶ Randomization for all sorts of NLA problems (we’ve seen low-rank

approx (matrix, tensors), rank estimation, least squares, leverage
scores)

▶ For tensors, single-mode-sketch→small sketch, economical
▶ Challenging least-squares problem, stability improved by

subsampling+regularization+iterative refinement (no proof)

[B. Hashemi and Y. Nakatsukasa, arXiv soon].

Post position available! (starting Mar 2024–Feb 2025)
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Fixed-rank experiments
Hilbert tensor 100× 100× 100× 100, Ai,j,k,l = 1

i+j+k+l−3 .
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MLN: [Bucci-Robol 23] (based on GN but rather different)
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Tomography example
original R-STHOSVD RTSMS
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Analysis: basic facts
For any Â of form Â = (AX(Y TAX)†Y T )A, (incl. HMT, GN, Nyström )
▶ Â = PAX,Y A, where PAX,Y := AX(Y TAX)†Y T is (usually oblique)

projection
▶ Also A(X(Y TAX)†Y TA) = APX,AT Y

▶ Error is

E = A−X(Y TAX)†Y TA = (I − PAX,Y )A
= A(I − PX,AT Y ) = (I − PAX,Y )A(I − PX,AT Y ).

Also

E = (I − PAX,Y )A = (I − PAX,Y )A(I −XMT )

for any M , because (I − PAX,Y )AX = 0.
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Analysis for HMT
Â = (AX(Y TAX)†Y T )A = PAX,Y A,

where Y = AX, so PAX,Y =: PAX is orthogonal projector,
∥PAX∥2 = ∥I − PAX∥2 = 1
▶ Error is EHMT = (I − PAX)A(I −XMT ), so

∥EHMT∥ = ∥(I − PAX)A(I −XMT )∥ ≤ ∥A(I −XMT )∥.

▶ Take M s.t. XMT = X(V T X)†V T = PX,V is oblique projection w/
row space V T (top r̂ sing. vecs. of A), V T (I − PX,V ) = 0, so
A(I − PX,V ) = A(I − V V T )(I − PX,V ).

▶ Thus with Σ2 = diag(σr̂+1, . . . , σn),
∥EHMT∥ ≤ ∥A(I − V V T )(I − PX,V )∥ = ∥Σ2V⊥V T

⊥ (I − PX,V )∥
≤ ∥Σ2∥∥(I − PX,V )∥2 = ∥Σ2∥∥PX,V ∥2 = ∥Σ2∥∥X(V T X)†∥2

’rectangular Gaussians are well-cond.’: ∥X(V T X)†∥2 ≲
√

m+
√

r√
r−

√
r̂

= ”O(1)”
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Analysis for Generalized Nyström
Â = (AX(Y TAX)†Y T )A = PAX,Y A,

E = (I − PAX,Y )A = (I − PAX,Y )A(I −XMT ) choose M such that
XMT = X(V T X)†V T = PX,V , we have

∥E∥ = ∥(I − PAX,Y )A(I − PX,V )∥
≤ ∥(I − PAX,Y )A(I − V V T )(I − PX,V )∥
≤ ∥A(I − V V T )(I − PX,V )∥+ ∥PAX,Y A(I − V V T )(I − PX,V )∥.

▶ Note ∥A(I − V V T )(I − PX,V )∥ exact same as HMT error
▶ Extra term ∥PAX,Y ∥2 = O(1) as before if c > 1 in Y ∈ Rm×cr

▶ Overall, about (1 + ∥PAX,Y ∥2) ≈ (1 +
√

n+
√

r+ℓ√
r+ℓ−

√
r
) times bigger

expected error than HMT, still near-optimal
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Precise analysis for Generalized Nyström
Theorem (Reproduces TYUC 2017 Thm.4.3)

Suppose X, Y are Gaussian. Then

√
E∥EGN∥2F ≤

√
1 + r + ℓ

ℓ− 1

√
E∥EHMT∥2F

proof. Write PAX,Y A = Q(QT + Z)A, where Q = orth(AX), so that
EGN = (I −PAX,Y )A = (I −QQT )A + QZA = EHMT + QZA. We have

QZA = Q((Y T Q)†Y T −QT )A = Q(Y T Q)†(Y T Q⊥)QT
⊥A

because ((Y T Q)†Y T −QT )Q = 0. If Y is Gaussian then Y T Q and
Y T Q⊥ are independent Gaussian, so bound follows.

39/33



Stability analysis sketch: fl(Â) = Âr + ϵ
Â = (AX(Y TAX)†

ϵ)Y T A. Each row of AX(Y TAX)†
ϵ is underdetermined

linear system, solve via SVD or (rank-revealing) QR.
Define sT

i = [AX(Y TAX)†
ϵ]i, ith row

si = ((Y TAX)T )†
ϵ[AX]Ti = (XTAT Y )†

ϵ[AX]Ti =: M †
ϵ [AX]Ti .

Computed version satisfies, by [ASNA Ch. 21] (Û : computed Range(M))

ŝi = (ÛT M + ϵ)†(ÛT [AX]Ti + ϵ) = (M + ϵi)†
ϵ([AX]Ti + ϵ)ϵ.

Thus

[fl(AX(Y TAX)†
ϵY

TA)]i = fl([AX + ϵ]i(Y TAX + ϵi)†
ϵY

TA)
= [AX]i(Y TÃX)†

ϵY
TA + ϵ∥[AX]i(Y TÃX)†

ϵ∥∥Y TA∥
= [AX]i(Y TÃX)†

ϵY
TA + ϵ = [Âr]i + ϵ

Row-wise stability follows from
∥AX(Y TAX)†∥ = O(1), ∥AX(Y T ÃX)†

ϵ∥ = O(1) (shown separately). 40/33



Fast computation of leverage scores
Approximating Leverage scores of M ∈ RN×n, N ≫ n:

1. Sketch and QR SA = QR.
2. Row norms of AR−1G, where G is n×O(1)

Complexity: O(Nn log N)

Idea:
▶ AR−1 is well-conditioned (as in Blendenpik), so roughly

row-norms∝leverage scores
▶ Estimate row-norm via AR−1G (trace/norm estimation)
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Part II: Rank estimation
In most low-rank algorithms, the rank r is required as input
▶ If r too low: need to resketch and recompute
▶ If r too high: wasted computation

A fast rank estimator is thus highly desirable

Definition
rankϵ(A): integer i s.t. σi(A) > ϵ ≥ σi+1(A).

This work: O(mn log n + r3) algorithm for rank estimation
[with Maike Meier (Oxford), arXiv 2021]

▶ In many cases, extra cost is much lower (e.g. O(r2))
▶ Key idea: Sample the singular values via sketching, Y TAX
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Goal of a rank estimator
It is usually not necessary (or even possible, with subcubic work) to find
the exact ϵ-rank.

We aim to find r̂ s.t.
▶ σr̂+1(A) = O(ϵ) (say, σr̂+1(A) < 10ϵ): r̂ is not a severe

underestimate, and
▶ σr̂(A) = Ω(ϵ) (say, σr̂(A) > 0.1ϵ): r̂ is not a severe overestimate.
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Consequently, it suffices to estimate σi(A) to their order of magnitude
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Previous studies on rank estimation
▶ Based on full factorization (e.g. Duersch-Gu 2020,

Martinsson-Quintana-Orti-Heavner 2019)
▶ cubic O(mn2)complexity

▶ Ubaru-Saad (2016): polynomial approximation and spectral density
estimates using Krylov subspace methods
▶ complexity difficult to predict

▶ Andoni-Nguyen (2013): theory that suggest rankest possible, no
algorithm

Our algorithm: based on random sketches AX, Y TAX

Key fact: σi(AX)/σi(A) = O(1) for leading i, and σi(Y TAX)/σi(AX) = O(1)
▶ Study of σi(AX) is covariance estimate

▶ Usually, at least n samples required
▶ But leading sing vals good with many fewer samples
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Main idea: random embedding preserves O(σi)

A → A X

→ Y T AX = Y TAX ∈ CO(r)×r

X, Y : Gaussian (or SRFT), scaled s.t. σi(QT X), σi(Y Q) ∈ [1− δ, 1 + δ].
Key fact: σi(A)

σi(Y T AX) = O(1) for i = 1, 2, . . . , r
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σi(AX)/σi(A) = O(1) for leading i
Let G ∈ Cn×r and

AG = U1Σ1(V ∗
1 G) + U2Σ2(V ∗

2 G) = U1Σ1G1 + U2Σ2G2,

Lemma
For i = 1, . . . , r,

σmin(Ĝ{i}) ≤ σi(AG)
σi(A) ≤

√
σmax(G̃{r−i+1})2 +

(
σr+1(A)σmax(G2)

σi(A)

)2

Ĝ{i} ∈ Ci×r: first i rows of G1, and G̃{r−i+1} last r − i + 1 rows of G1.
If G is standard Gaussian, Ĝ{i}, G̃{r−i+1}, and G2 are independent
standard Gaussian.

proof: Courant-Fisher minimax characterization.
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σi(AX)/σi(A) = O(1) cont’d

σmin(Ĝ{i}) ≤ σi(AG)
σi(A) ≤

√
σmax(G̃{r−i+1})2 +

(
σr+1(A)σmax(G2)

σi(A)

)2

When X scaled Gaussian (embedding)

Theorem
Let X ∈ Rn×r with Xij ∼ N(0, 1/r). Then for i = 1, . . . , r

1−

√
i

r
≤ Eσi(AX)

σi(A) ≤ 1 +

√
r − i + 1

r
+ σr+1

σi

(
1 +

√
n− r

r

)
.

Failure probability decays squared-exponentially

Proof: Marchenko-Pastur (“rectangular random matrices are
well-conditioned”)
▶ Interpretation: σi(AX)

σi(A) ≈ 1, esp. for small r
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σi(AX)/σi(A) = O(1) cont’d

σmin(Ĝ{i}) ≤ σi(AG)
σi(A) ≤

√
σmax(G̃{r−i+1})2 +

(
σr+1(A)σmax(G2)

σi(A)

)2

When X general embedding

Theorem
Let Ṽ1 be A’s top right singvecs, and suppose σi(V T

1 X) ∈ [1− ϵ, 1 + ϵ]
for some ϵ < 1. Then, for i = 1, . . . , r̃

1− ϵ ≤ σi(AX)
σi(A) ≤

√
(1 + ϵ)2 +

(
σr̃+1(A)∥X∥2

σi(A)

)2
.

ϵ-subspace embedding, (e.g. SRFT (subsampled random Fourier
transform), i.e. X = DFS, D : diag, F : FFT, S: subsampling), also
effective choices for X 47/33



Experiments σi(AX)/σi(A) = O(1)
A ∈ R1000×1000

▶ Leading singvals estimated reliably (when they decay)
▶ Tail effect nonnegligible (esp. for last i ≈ r)
▶ Hence trust only leading (say 90%) samples
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2nd step: σi(Y TAX)/σi(AX) = O(1)
Corollary (Combines Boutsidis-Gittens (13) and Tropp (11))

Let AX ∈ Rm×r1 , with m ≥ r1, and let Y ∈ Rn×r2 be an SRFT matrix.
Let 0 < ϵ < 1/3 and 0 < δ < 1. If

r2 ≥ 6ηϵ−2
[√

r1 +
√

8 log(m/δ)
]2

log(r1/δ),

then with failure probability at most 3δ

√
1− ϵ ≤ σi(Y TAX)

σi(AX) ≤
√

1 + ϵ,

for each i = 1, . . . , r1.
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σi(Y TAX)/σi(AX) = O(1)

Y T AX = Y TAX = Q R ∈ CO(r)×r

▶ Approximate orthogonalization: ideas from Blendenpik etc
[Avron-Maymounkov-Toledo 10]

▶ In generalized Nyström, Y TAX = QR already computed +
rank-revealing QR ⇒ σi(Y TAX) ≈ diag(R); only O(r) extra cost
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Experiments: σi(Y TAX)/σi(AX) = O(1)
AX ∈ R105×2000
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▶ |σi(Y TAX)
σi(AX) − 1| small esp. for leading singvals

▶ Reasonable estimates even for i ≈ r
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The rank estimation algorithm

Algorithm Given A ∈ Cm×n, tolerance ϵ and an upper bound for rank r1,
compute approximate ϵ-rank.

1: Set r̃1 = round(1.1r1) to oversample by 10%.
2: Draw n× r̃1 random embedding matrix X.
3: Form the m× r̃1 matrix AX.

2. Approximate orthogonalization:
4: Set r2 = 1.5r̃1, draw an r2 ×m SRFT embedding matrix Y .
5: Form the r2 × r̃1 matrix Y TAX.

3. Singular value estimates:
6: Compute the first r1 singular values of Y TAX.
7: Output smallest r̂ s.t. σr̂+1(Y TAX) ≤ ϵ.

Complexity: O(mn log n + r3)
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Experiments: rank estimation
SP/FP: slow/fast polynomial decay in σi(A), SE/FE: slow/fast exponential decay
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Experiments: gaps in singular values
AG,IC : incoherent singvecs, AG,C : coherent singvecs (V = I)
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For coherent problems, Hashed (not subsampled) RFT helpful [Cartis-Fiala-Shao 21]
For details, please see preprint Meier-N. “Fast randomized numerical rank

estimation” arXiv 2021. 54/33
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